RAJIV GANDHI GOVT. P. G. (AUTONOMOUS) COLLEGE AMBIKAPUR (C.G)

CHOICE BASED CREDIT SYSTEM (CBCS)

Syllabus for Master of Science in BOTANY

SEMESTER SYSTEM

PROGRAM OUTCOMES OF POSTGRADUATE DEGREE PROGRAMS

Students would be benefited with knowledge of core subjects like plant diversity, physiology and biochemistry, molecular cytogenetics and application of statistics etc. which are offered in these subjects Modules on analytical techniques, plant tissue culture and phytochemistry would make them obtain skills in doing research. All the courses in the programme are carefully designed to equip the students for competitive exams like CSIR NET, SET etc. and to write research proposals for grants.

PO1: Application of knowledge

Maintain a high level of scientific excellence in botanical research with specific emphasis on the role of plants. Create, select and apply appropriate techniques, resources and modern technology in multidisciplinary way. Practice of subject with knowledge to design experiments, analyze and interpret data to reach to an effective conclusion.

PO2:Ability to covey the concept clearly

They would identify, formulate and analyze the complex problems with reaching a substantiated conclusion. Logical thinking with application of biological, physical and chemical sciences. Learning that develops analytical and integrative problem-solving approaches.

PO3:Honesty and Integrity with Global Thinking

Student should be aware of ethical issues and regulatory considerations while addressing society needs for growth with honesty. Knowledgeable discipled students with good values, ethics, kind heart will help in nation building globally.

PO4:Environmental and Sustainability

Best problem-solving skills in students would encourage them to carry out innovative research projects thereby making them to use knowledge creation in depth. Understand the impact of the plant diversity in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO5: Scope and importance of Botany

Student will understand scope and importance of Botany in every field especially in dealing with societal and environmental issues, agriculture, ethics and healthcare.

PO6:Life Long learning and Problem solving

They would lend the support to other students to grow with them with equal opportunities. Student will also understand and solve problems of relevance to society to meet the specified needs using the knowledge, skills and attitudes acquired.

PO7: Practical skills and Modern tool usage

Students learn to carry out practical work, in the field and in the laboratory, with minimal risk. They gain introductory experience in different field of botany. This will also help to Create, select, and apply appropriate techniques, resources, and modern instruments and equipments for Biochemical estimation, Molecular Biology, Biotechnology, Plant Tissue culture experiments, cellular and physiological activities of plants with an understanding of the application and limitations.

PO8: Transferable and Technical skills

- 1. Use of IT (word-processing, use of internet, statistical packages and databases).
- 2. Communication of scientific ideas in writing and orally.
- 3. Ability to work as part of a team.
- 4. Ability to use library resources.
- 5. Time management.
- 6. Career planning.

• M. Sc. in BOTANY

FACULTY OF SCIENCE

• **FIRST SEMESTER** (ODD SEMESTER)

Eligibility Criteria (Qualifyin g Exams)	Admissio n Criteria	Course Code	Course Type	Course (Paper/Subjects)		Contact Hours Per WeeK		EoSE Duration (Hrs.)			
g LAdilis)						L	Т	Р	Thy	Р	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	sided	PD3-701	CCC	CELL AND MOLECULAR BIOLOGY	6	4	2	0	3	0	
(Pure	ıl) if dec Policy.	PD3-702	CCC	ALGAE	6	4	2	0	3	0	
Science (P e)	d ora sity ation	PD3-701 & PD3-702	CCC	LAB – A :- CELL AND MOLECULAR BIOLOGY & ALGAE (PRACTICAL)	3	00	00	3	0	3	
ce) S	t List or/an niver	PD3-703	CCC	PHYSIOLOGY AND BIOCHEMISTRY	6	4	2	0	3	0	
ee in any S Bioscience)	1) Meri Test (written by the U ervance of R	) Meri (written oy the U	PD3-703 & PD3- 706	CCC& ECC/CB	LAB –B:- PHYSIOLOGY AND BIOCHEMISTRY & ENVIRONMENTAL SCIENCE (PRACTICAL)	3	00	00	3	0	3
Degr		PD3-704	PRJ/FS T/EST	SOCIAL OUTREACH AND SKILL DEVELOPMENT ¼MEDICINAL PLANT AND THEIR CULTIVATION½	6	00	00	9	00	4	
or	ran C	PD3-705	ECC/CB	CONSTITUTIONALISM & INDIAN POLITICAL SYSTEM	6	4	2	00	2	00	
Bachelor	Entrance 3) Obs	PD3-706	ECC/CB	ENVIRONMENTAL SCIENCE	6	4	3	00	3	00	
Bac	A MINIMUM CREDITS IN INDIVIDUAL SUBJECT IS 6 AND IN COMPLETE SEMESTER IT WOULD BE 30				TOTAL = 36						

## Cell and Molecular Biology (Course Code: -PD3-701)

Course outcome: - After successful completion of this course, students will be able to understand: -

- 1. Co1 the cell structure in relation to function of cells the fundamental unit of life, are concerned in this course along with molecules present in cells.
- 2. Co2 Understanding of the structure and function of cell wall plasma membrane and how the packaging of DNA. Students will also know the gene regulation process in prokaryotes.
- 3. Co3 Students will understand about cell division and apoptosis and also understand the rotted various cell organelles.
- 4. Co4 students will understand about fine structured Gene DNA replication and transcription in protein synthesis understanding the different structural and numerical changes why? And how?
- 5. Co5-Understand the instruments, techniques and good lab practices for working in a Molecular laboratory.
- 6. Co6-Develop skill to operate the instrument in laboratory.
- 7. Co7-Can be employed in the genetic laboratory & start his own venture.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1							٧
PO2	V		V	V			
PO3							
PO4							
PO5						V	V
PO6							
PO7		٧			٧	٧	
PO8							

	Sc. (BOTANY) CSTER			IST					
COUR	RSE CODE: PD3-701	PAPE	R-I	COURSE TYPE:					
	CCC COURSE TITLE: CELL AND MOLECULAR BIOLOGY								
		<b>CREDIT:6 + 3</b>	ног	JRS:90+45					
THEC	<b>DRY: 6</b>	PRACTICAL:3 MAR	THEORY:90 KS	PRACTICAL: 45					
	THEORY:	100 (70+30)		CTICAL:100/2					
Scher i.	ne of Marks: Short Answer typ (Word Limit 100		carrying 5 Marks each t	o be asked two to be attempted.					
<ul> <li>ii. Middle Answer type questions: Three questions carrying 9 Marks each to be set asked two to be attempted. (Word Limit 250 Word)</li> <li>iii. Long Answer type questions: Five questions carrying 14 Marks each to be set three to be attempted. (Word Limit 700 Word)</li> </ul>									
18 Hours	Introduction to modern tools and techniques of cell biology: Gel electrophoresis (Agarose and PAGE), Blotting Technique (Southern, Northern and western blotting), DNA microarray. Cell fractionation.								
18Hours	<ul> <li>Cell components and their functions: Dynamic structure, functions and biogenesis of cell wall and plasma membrane; its components,</li> <li>Chromosome: Morphology and fine structure of chromosome and numerical changes in chromosome. Chromatin structure in eukaryotes;</li> </ul>								
18 Hours	Cell multiplication and turnover: Cell Cycle and cell cycle regulation; Cell division; Apoptosis; New         insights in structure and function of cytoplasmic cell organelles (nucleus; golgi complex, endoplasmic         reticulum, ribosomes, mitochondria, chloroplast).								
18Hours	Gene structure, regulation and expression in eukaryotes: DNA replication; transcription and translation- (Structure, Mechanism and enzyme responsible) RNA splicing, condensation and packaging of DNA in prokaryotes and eukaryotes. Gene regulation in Eukaryotes and prokaryotes.								

S	Organellar genomes: Organization and function of mitochondrial and chloroplast genomes, diversity
our	and evolution of organelle genomes, mitochondrial DNA and male sterility. Structure and function of
18Hours	plants cytoskeletal gene and gene products, protein sorting.
	1. The second life the second share a stant and flag second size share his share his start his last the start his second star
	1. To exemplify the use of phase contrast and fluorescence microscopy in plant biology by studying
	phase objects and auto fluorescent specimens or those stained with Fluoro chromes, such as, carbo
	fluoresce in diacetate, aniline blue, white, Evans blue and neutral red colour.
	2. Isolation and purification of nuclei and their staining with Feulgen stain or DAPI.
11)	3. Isolation of mitochondria and their visualization with Janus green B and mitotracker.
3-70	4. Isolation of chloroplasts and determination of number of chlorophyll molecules per chloroplast.
(PD	5. Comparing the effect of some physical and chemical factors on the efficiency of photosynthetic
RK	electron transport.
0M	6. To study the effect of inhibitors and uncouplers on the activity of succinic dehydrogenase, a marker
RY	enzyme of mitochondria.
LABORATORY WORK (PD3-701 )	7. In situ visualization of microfilaments and microtubules by fluorescent labelling.
DRA	8. In silico analysis (sequence comparison) of mitochondrial and chloroplast genes for identification of
ABC	the loci for interspecific discrimination.
L	9. Molecular characterization of GUS-actin constructs in Arabidopsis thaliana using microscopy and
	PCR.
	10. Multiple sequence alignment and ontology based database searches on selected plant cytoskeletal
	genes to deciphering the molecular phylogeny of cytoskeleton genes.
	11. Immuno staining of nuclei, chloroplast and/or mitochondria.
	1. Alberts B, Johnson A, Lewis J, Raff Martin, Roberts K and Walter P. (2007) Molecular Biology of the
	Cell. Garland Publ., New York.
	2. Bonifacino JS, Dasso M, Harford JB, Liipincott-Schwartz J and Yamada KM. (2004) Short Protocols
GS	in Cell Biology. John Wiley & Sons, New Jersey.
SUGGESTED READINGS	3. Bregman AA (1987) Laboratory Investigations in Cell Biology. John Wiley & Sons, NewYork.
IAI	4. Hawes C and Satiat-Jeunemaitre B (2001) Plant Cell Biology: Practical Approach. Oxford University
R	Press, Oxford.
ED	5. Hirt RP and Horner DS (2004) Organelles, Genomes and Eukaryote Phylogeny: An evolutionary
ESE	synthesis in the age of genomics. CRC Press.
55	6. Karp G. (2008) Cell and Molecular Biology: Concepts and Experiments. John Wiley &Sons.
SUC	7. Lodisch H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H and MatsudaireP (2008)
	Molecular Cell Biology. WH Freeman & Co., New York.
	8. Ruzin SE (1999) Plant Microtechnique and Microscopy. Oxford Univ. Press, Oxford.
	9. Wischnitzer S. (1989) Introduction to Electron Microscopy. Pergamon Press, New York.

# (Course Code: -PD3-702)

Course Outcome: - After completion of this course the students will be able to -

Co1 – Understand and explain the thallus organization cell structure and reproduction in various group of algae.

Co2 – Understand the general characters, habitats range of thallus, structure, organization, reproduction economic importance of algae.

Co3 – Understand the process of algal culturing techniques in the laboratory.

Co4 – Understand the technique of cryopreservation aquaculture of micro and macro algae cultivation.

Co5 – Understand the use and application of seaweeds and agar and role of algae in bioengineering.

Co6-- Understand the techniques and good lab practices for working in a laboratory.

Co7- Develop skills for preparation of slides.

PO	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1		٧	٧		V		
PO2	V	V		V			
PO3							
PO4				V			
PO5							
PO6							
PO7			٧		V		V
PO8	٧		٧		<b>√</b>	v	<u>۷</u>

M.	Sc. (BOTANY)			IST			
	ESTER	70.0		COURSE TYPE:			
COURSE CODE: PD3-702 PAPER-II COURSE TYPE							
		COURSE T	TLE: ALGAE				
	CRED	IT:6 +3	НО	URS:90+45			
THE	ORY: 6	PRACTICAL:3	THEORY:90	PRACTICAL: 45			
		MA	RKS				
	THEORY:	100 (70+30)	PRAC	TICAL:100/2			
Sche	eme of Marks:						
i.	Short Answer ty	pe questions: Three questior	s carrying 5 Marks each to	b be asked two to be attempted.			
	(Word Limit 10	0 Word)					
ii.	Middle Answer	type questions: Three question	ons carrying 9 Marks each	to be set asked two to be			
	attempted. (Wor	rd Limit 250 Word)					
iii.	Long Answer ty	pe questions: Five questions	carrying 14 Marks each to	be set three to be attempted.			
	(Word Limit 70	0 Word)					
	D:	<b>1</b>					
rs	-	-		rs, Habitats, systematic study of			
18 Hours	range of Thallus organization, cell structure and reproduction in algae. Pigmentation in algae; different						
$\stackrel{\mathbf{H}}{\approx}$ types of life cycle in algae.							
rs	Classification: Gen	neral characters, habitats,	range of thallus structur	re, organization, reproduction,			
Hours	Phylogeny and interrelationship of following groups of algae: - Cyanophyta, Chlorophyta, Xanthophyta,						
181	Bacillariophyta,						
S.	Classification: Ger	neral characters, habitats,	range of thallus structur	re, organization, reproduction,			
loun	Phylogeny and interrelationship of following groups of algae: Phaeophyta and Rhodophyta. Economic						
18 Hours	importance of algae	; Chlamydomonas and Porph	yra as modern experiment	al systems.			
	Algal Biotechnolog	y: Historical perspectives, a	gal culturing techniques i	n the laboratory, tissue and cell			
rS	culture studies in s	eaweeds. Cryopreservation,	aquaculture (micro and r	nacro algae cultivation), Algal			
18Hours	<b>biofuels</b> – algal biodiesel, bio-ethanol and biological hydrogen production; Algae in global warming –						
181	carbon capture by al						
	Industrial Phycolo	ogy: Products, processes a	nd applications, seaweed	ls polysaccharides like Agar.			
ours	Bioactive compound	ls from algae: Bio-fertilizers	Algae in bioengineering.				
18Hours							
Ι							

	1. Study of diversity of freshwater and marine algae.					
3-702)	2. Raising of pure culture.					
(PD3	3. Phytoremediation experiments					
LABORATORY WORK (PD3-702)	4. Microtechniques					
	1. Andersen RA (2005). Algal Culturing Techniques. Physiological Society of America. Elsevier					
	Academic Press, USA.					
	2. Cole KM and Sheath RG (1990). Biology of the Red Algae. Cambridge Univ. Press, Cambridge.					
Э́З	3. Fritsch FE (1945). The Structure and Reproduction of Algae. Vol. II. Cambridge Univ. Press.					
ADI	Cambridge, London.					
SUGGESTED READINGS	4. Isabella A. Abbott, George J and Hollenberg (1993). Marine Algae of California. Stanford University					
LED	Press. USA.					
ES	5. Lee RE (1989). Phycology. Vol. II. Cambridge Univ. Press. Cambridge, USA.					
JGG	6. Sahoo D & Qasim SZ (Eds), (2002). "Sustainable Aquaculture". APH Publishing Corporation, New					
IS	Delhi, India.					
	7. South GR and Whittick A. (1987). Introduction to Phycology. Blackwell Scientific Publications.					
	London.					

## **Physiology and biochemistry**

(Course Code: -PD3-703)

## Course Outcome: -

Co1 – After completion of this course student will understand how enzymes serve important function in body, indigestion and metabolism. They have developed knowledge about pathway of water through xylem and phloem.

Co2 – Student will understand the importance of photosynthesis in plants. They will also understand photosynthesis is one of the most important processes that allow plants to live.

Co3 – Student will come to know that energy produced by respiration is essential for normal functioning of body. They will also understand functional lipid and role of nitrogen cycle in environment.

Co4 – Student will be able to know the concept of different plant growth hormones and their role in plant growth and stress physiology.

Co5 – Student will be able to know the mechanism of flowering. They also understand the circadian rhythm and plant movements.

Co6 -Learn the symptoms of Mineral Deficiency in crops and their management.

Co7- Assimilate Knowledge about Biochemical constitution of plant diversity

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1		V	V			V	
PO2	V	V	V		V		V
PO3							
PO4							
PO5							
PO6		V		V			
PO7							V
PO8						٧	

	I.Sc. (BOTANY)			IST				
	ESTER RSE CODE: PD3-703	PAPER	-111	COURSE TYPE:				
	C	OURSE TITLE: PHYSIOLOG	Y AND BIOCHEMIST	RY				
	CREDI	T:6+3	НО	OURS:90+45				
THE	ORY: 6	PRACTICAL:3	THEORY:90	PRACTICAL: 45				
		MARK	S					
	THEORY: 1	00 (70+30)	PRAC	TICAL:100/2				
Sche i.	e <b>me of Marks:</b> Short Answer type (Word Limit 100 V		rrying 5 Marks each to	be asked two to be attempted.				
ii.		be questions: Three questions of	carrying 9 Marks each t	to be set asked two to be				
	attempted. (Word ]							
iii	-	questions: Five questions carr	ying 14 Marks each to	be set three to be attempted.				
	(Word Limit 700 V	Word)						
	Diamalagula and asta	Luste Amine Asid and motion	(starseture trace and	and figurestical along if insting of				
F-		•		configuration) classification of				
ours		protein, protein folding and protein sequencing; Structure, types and biological function of Carbohydrates						
18 Hours	Lipid and Vitamins. Enzymes: Enzymes and its kinetics, naming and classification of enzyme, Enzyme inhibition and							
I	Regulatory Enzyme. Isozyme, Ribozyme and Zymogen.							
				Potential. Absorption of water				
sı		•		•				
18Hours	unloading.	by land plants, Ascent of sap, Mechanism of ion Absorption, Translocation in plants- phloem loading and unloading						
<b>Transpiration:</b> types, mechanism and principal of Transpiration, regulation of transpiration.								
urs	-	·	· · ·	etic apparatus, photosynthetic				
18 Hours				on assimilation (C3, C4 and				
CAM cycle) Photorespiration and its significance, biosynthesis of starch and sucrose.								
S.	Respiration and lipid	metabolism: Overview of p	lant respiration, glycol	ysis, the TCA cycle, electron				
18Hours	transport and ATP synt	hesis, pentose phosphate pathy	way, glyoxylate cycle, a	alternative oxidase system.				
181	Nitrogen metabolism:	Mechanism of Nitrogen meta	bolism, Nitrogen fixatio	on by plants and environment.				

	Plant hormones and other growth regulators: Concept, Synthesis, Signalling and function of Plant					
	growth regulator i.e. Auxins, Gibberellins, Cytokinins, Ethylene, Abscisic acid, classical approaches and					
SJ	use of mutants in understanding hormone actions.					
18Hours	Sensory Photobiology: Structure, function and mechanisms of action of phytochromes, cryptochromes					
181	and phototropins. Floral induction (ABC model), Plant movements.					
-	1. In vivo assay for nitrate reductase in leaf tissues.					
	2. Comparative assessment of methods for protein quantitation.					
-703	3. Study of enzyme kinetics for determination of Km value, nature of inhibition –					
PD3	Competitive / non competitive.					
SK (	4. Study of enzyme kinetics for effect of time/ enzyme concentration/ pH.					
VOF	5. Extraction of proteins from plant tissue and their quantitative (Bradford's) and qualitative (SDS, PAGE					
LABORATORY WORK (PD3-703)	gel) analysis.					
TOF	6. Detection of phosphoproteins in plant (Brassica) extract by pro Q diamond staining.					
RA'	7. Qualitative and quantitative analysis of photosynthetic pigments and anthocyanins by					
ABO	spectrophotometric and chromatographic techniques.					
$\mathbf{L}^{k}$	8. PAGE analysis of pigment-protein complexes from chloroplasts.					
	1. Ainsworth C (2006) Flowering and its Manipulation, Annual Plant Reviews, Vol. 20. Blackwell					
	Publishing, Oxford, U.K.					
	2. Brown TA. (2002) Genomes, BIOS Scientific Publishers Ltd, Oxford, UK.					
Ś	3. Buchanan B, Gruissem G and Jones R. (2000) Biochemistry and Molecular Biology of Plants,					
NG	American Society of Plant Physiologists, USA.					
<b>I</b> DI	4. Davies P J. (2004) Plant Hormones: Biosynthesis, Signal Transduction, Action. 3rd Edition, Kluwer					
SUGGESTED READING	Academic Publisher, Dordrecht, The Netherlands.					
	5. Jordan BR. (2006) The Molecular Biology and Biotechnology of Flowering, 2nd Edition, CAB					
STE	International, Oxfordshire, U.K.					
GE	6. Lodish H, Berk A, Kaiser CA and Krieger M. (2008) Molecular Cell Biology, 6th Edition, W.H.					
nG.	Freeman and Company, New York, USA.					
S	7. Nelson DL and Cox MM. (2004) Lehninger Principles of Biochemistry, 4th Edition, W.H. Freeman and					
	Company, New York, USA.					
	8. Taiz L and Zeiger E. (2006) Plant Physiology, 4th Edition, Sinauer Associates Inc. Publishers,					
	Massachusetts, USA.					

## Medicinal plants and their cultivation

(Course Code: -PD3-704)

Course Out Come - On Completion of this course the students will be able to-

Co1 – Understand the method of establishment of nursery of medicinal plants and gain the know led knowledge how the medicinal plants cultivate.

Co2 – Understand the method of preparing the various herbal product kike candy, toffee, murabba and herbal gulal.

Co3 – Understand the process of the production of various beauty product from aloevera leaves and bio-diesel from jetropha seeds.

Co4 – Understand the method to prepare the insecticide from neem seed, karanj seed and mustard seeds. They students will also know the production of essential oil.

Co5 – Students will get knowledge about the priministers employment generation programme and also know the function of national medicinal plant Board.

РО	CO1	CO2	CO3	CO4	CO5
PO1	V	V	V		
PO2					
PO3					<b>√</b>
PO4					√
PO5		٧	V	٧	
PO6					
<b>PO7</b>	V			٧	
PO8	V			٧	

	I.Sc. (BOTANY) IESTER			IST			
COU	JRSE CODE: (VAC) PI	D3-704 P	APER-IV	COURSE TYPE:			
CCC		VALUE ADDI	ED COUDSE				
	COURSE	TITLE: MEDICINAL PLA		VATION)			
	ODED		100				
	CRED	911:0	HU	URS: 90			
THE	CORY:2	PRACTICAL:4	THEORY:30	PRACTICAL:60			
		DISTRIBUTION	-				
тні	<u>SEE M</u> CORY: 70	<u>ARKS</u> PRACTICAL:00	INTERNAL ASSESS	<u>MARKS</u> AFNT · 30			
1 1 1 1		I KACHCAL.00	IIIIERIAL ASSESSI				
	<b>OBJECTIVE:</b>	THE BASICS OF MEDI		HEIR			
	Project Profile for the ex	CULTIVAT stablishment of nursery of m	YION AND USES				
STU	Projects Profile for the commercial cultivation of medicinal plants.						
Hours	Project Profile for the establishment of herbal collection Centre.						
6 1	Project Profile for the pr	roduction of herbal powder.					
	Project Profile for the production of Herbal Extract.						
S.	Project Profile for the production of various fruit products like Candy, Toffee, Murabba, Supari from Alma						
Hours	Fruits etc.						
6 H	Project Profile for the production of Herbal Gulal.						
rs	Project Profile for the p	roduction of Aloe Vera juid	ce and Gel from Aloe Vera	a leaves. Production of Aloe			
our	Vera powder. Productio	n of Bio-diesel from Jetroph	a seeds.				
e Hou							
	Project Profile for the p	roduction of oil from Neem	and Karanj seeds. Produc	tion of Bio-Insecticide from			
urs	Mustard seeds,						
Hours	Production of essential oils, Establishing herbal mosquito repellent unit.						
9	roduction of essential one, Establishing heroar mosquito repenent and.						
	Project Profile for the	production of glasses and	cubes from Vijaysar or	Pterocarpus marsupium for			
	Diabetic patients.						
5	Production of Garlic	powder, production of her	bal Pesticides. Priministe	er's employment generation			
Hours	programme, National M	edicinal Plants Board.					
6 Ha							
0							

- 1. Medicinal Plants Cultivation & Their Uses by H. Panda, 2002
- 2. Herbs Cultivation and Medicinal Uses by H. Panda 1999
- 3. A Handbook of Medicinal Plants: A Complete Source Book by Narayan Das Prajapati 1950
- Midwest Medicinal Plants: Identify, Harvest, and Use 109 Wild Herbs for Health and Midwest Medicinal Plants by Lisa M Rose.2017
- 5. Gallery of medicinal plants (dravyaguna vigyan) by monika sharma 2022

## **Environmental Science**

Course Code: -PD3-706

## Course Outcome

Co1 – After completion of this course student will be able to know the environmental stresses and their management like global climatic change and global warming. They also will understand the effect of air, water and soil pollution in environment.

Co2 – Student will understand the uses of fertilizer, pesticides and other chemical in agriculture and their impact on biodiversity of microbe, animals and plants. They will also get knowledge about environmental issues, policies and regulation.

Co3 – Student will understand the regulative organization in community. Student will get to know about how changes take place during ecological succession.

Co4 – Student will develop knowledge about structure and function of ecosystem. They also will understand how to conservation takes place of agriculture forest and soil.

Co5 – Student will develop knowledge about human health and environmental change. They also will understand the importance of natural resources and their management and application of GIS.

Co6- They will also understand the role of environment on human heath henceforth develop emotional attachment for sustainable development

РО	CO1	CO2	CO3	CO4	CO5	CO6
PO1	V		V			
PO2		V				V
PO3						
PO4	V		V	V	V	
PO5						V
PO6					V	
PO7						
PO8				٧		

	.Sc. (BOTANY) ESTER		IST						
	RSE CODE: PD3-706 PA	PER-V	COURSE TYPE:						
COURSE TITLE: ENVIRONMENTAL SCIENCE									
	CREDIT: 6+3	HO	URS:90+45						
THE	ORY: 6 PRACTICAL:3	THEORY:90	PRACTICAL: 45						
	MAF								
	<b>THEORY: 100 (70+30)</b>	PRAC	FICAL:100/2						
Sche i.	eme of Marks: Short Answer type questions: Three questions	carrying 5 Marks each to l	be asked two to be attempted.						
	(Word Limit 100 Word)								
ii.	Middle Answer type questions: Three question	s carrying 9 Marks each to	b be set asked two to be						
	attempted. (Word Limit 250 Word)								
iii	iii. Long Answer type questions: Five questions carrying 14 Marks each to be set three to be attempted.								
	(Word Limit 700 Word)								
	Environmental Stresses and their management, g	lobal climatic pattern and	variations over time, global						
18 Hours	climatic changes and global warming, atmospher	ic ozone, acid and nitroge	en deposition. Environmental						
pollutants- air, water and soil pollution.									
I									
	Use of fertilizer, pesticides and other chemicals in	n agriculture and hygiene	and their disposal. Impact of						
sını	chemicals on biodiversity of microbes, animals and plants. Bio indicator and biomarkers of environmental								
18Ho	health. Biodegradation and bioremediation of chen	nicals, environmental issue	es, policies and regulations.						
18									
	Vegetation development: Mechanism of ecolog	cical succession, (facilitat	ion, tolerance and inhibition						
18 Hours	models), changes in ecosystems properties and reg	ulations during succession							
8 HG									
18									
s.	Origin of intra-population variation: Population	and the environment, ecad	des and ecotypes, Ecosystems						
18Hours	and living organism. Conservation and management	nt agriculture, forest and so	oil.						
181									
	Major ecosystem of the world and India. Human	health and environment	al change, population issues.						
our	natural resources and their management. Application		C / I I						
18Hours									

	1.	E. coli growth curve.
<b>)</b> (9)	2.	Preparation of competent cells and transformation of E. coli (chemical/electroporation method).
3-7(	3.	Plasmid DNA isolation, quantification and agarose gel electrophoresis.
(PL	4.	Restriction digestion, elution and cloning in E. coli.
JRK	5.	RCR.
WC	6.	Preparation of protein extracts from E. coli, quantification and SDS-PAGE analysis.
IRY	7.	Inducible expression of proteins in E. coli.
ATC	8.	ELISA.
OR	9.	Southern Hybridization.
LABORATORY WORK (PD3-706)	10	. Yeast transformation.
	11	. RNA extraction and preparation of cDNA.
	1.	Buchanan B, Gruissem G and jones R(2000). Biochemistry and Molecular Biology of plants,
		American society of plant physiologists, USA.
IGS	2.	Harlow and Lane D (eds.) (1988). Antibodies - A laboratory Manual; cold spring Harbor
DIN		laboratory, USA.
EA	3.	Lieber DC (2006). Introduction to Proteomics: Tools for new biology; Humana Press, NJ.
SUGGESED READINGS	4.	Pennington SR, Dunn M J (Eds.) (2002). Proteomics: From Protein Sequence to function, BIOS
SE		scientific publishers, United Kingdom.
GE	5.	Sambrook J and Russell DW (2001). Molecular cloning – A Laboratory manual, Vols I-III, cold
nG		Spring Harbor laboratory, USA.
S	6.	Singer M and Berg P (1991). Genes and Genomes: A changing perspective; University Science
		Books, CA, USA.

• M. Sc. in BOTANY

#### FACULTY OF SCIENCE

• SECOND SEMESTER (EVEN SEMESTER)

Eligibility Criteria (Qualifying Exams)	Course Code	Course Type	Course (Paper/Subjects)			Contact Hours Per WeeK			SE ation rs.)
					L	Т	Р	Thy	Р
of	PD3-801	CCC	GENETICS	6	4	2	00	3	00
nester umber	PD3-802	CCC	ADVANCES IN ARCHEGONIATAE (BRYOPHYTA AND PTERIDOPHYTA) LAB – A :- GENETICS& ADVANCES IN ARCHEGONIATAE (BRYOPHYTA AND PTERIDOPHYTA) (PRACTICAL)		4	2	00	3	0
e First semester e of any number papers	PD3- 801&PD3- 802	CCC			00	00	3	00	3
	PD3-803	CCC	GYMNOSPERM	6	4	2	00	3	0
in ect	PD3- 803&PD3- 806	803&PD3- ECC/CB LAB – B :- GYMNOSPERM & FUNGI (PRACTICAL)	3	00	00	3	00	3	
After appearing examination irresp back/ ar	PD3-804	OSC	RESEARCH METHODOLOGY & COMPUTER APPLICATION: BASICS ENVIRONMENTAL AND FOREST LAWS		4	3	00	3	00
er : nat	PD3-805	ECC/CB			4	3	00	2	00
After minat	PD3-806	ECC/CB	FUNGI	6	4	3	00	3	00
exa	MINIMU	M CREDITS	IN INDIVIDUAL SUBJECT IS 6 AND IN COMPLETE SEMESTER IT	TOTAL=					
			WOULD BE 30	36					

## <u>Genetics</u> Course Code: - PD3-801

## Course outcome: -

Co1 – Student will understand about fine structure of gene and viral and bacterial genomes students will also understand the Mendel law of inheritance and organelle inheritance.

Co2 – Student will understand the mechanism of linkage and crossing over and they also know the interaction of gene, genetic recombination producing the characters differently.

Co3 – Understand the role and process of mutation and different mutagenic agent which brings about mutation in the organism. Student will also know about on co genes and cancer.

Co4 – Student will understand the different aspect of genetics. They also understand how to DNA damage and repair themselves.

Co5- Understand the techniques and lab practices for working in field of Anatomy.

Co6- Can be employed in genetical laboratory &start his own venture.

Co7- Develop understanding of gene interaction and pedigree analysis.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1	V		V				V
PO2	٧	٧		٧			٧
PO3							
PO4							
PO5						٧	
PO6		٧					
PO7					V		
PO8					V		

			COURSE TIT	LE: GENETICS				
		CRED	IT:6+3	Н	OURS:90+45			
THE	ORY: (	6	PRACTICAL:3	THEORY:90	PRACTICAL: 45			
			MA	ARKS				
		<b>THEORY:</b>	100 (70+30)	PRA	CTICAL:100/2			
Scheriv vi sumoH 81	atte Mi be i. Lo: atte Microb and bac gene reg	ort Answer ty eempted. (Wor iddle Answer attempted. (Wo ong Answer ty eempted. (Wor <b>Dial Genetics:</b> cteria (transfo gulation, Para	d Limit 100 Word) type questions: Three questions: Three questions: Three questions: Five quest d Limit 700 Word) Viral and bacterial ge ormation, conjugation a sexual cycle.	estions carrying 9 Marks ions carrying 14 Marks e nomes and derived vector nd transduction); Fine s	each to be asked two to be s each to be set asked two to each to be set three to be ors; Recombination inviruse structure of gene;Prokaryoti f inheritance;Mendelian laws			
18Hours	Gene interactions; Organelle inheritance.  Eukaryotic Genome: Gene structure, Gene regulation.  Recombination in Eukaryotes: Linkage and crossing over: basic concepts, linkage maps,correlation of genetic and physical maps, molecular markers and construction of linkage							
18 Hours	<ul> <li>maps;Molecular mechanism of recombination.</li> <li>Mutation: Basic concept, spontaneous and induced mutations, allele theory, physical andchemical mutagens; Molecular basis of mutations; Transposons and their use in mutagenesisand gene tagging in plant systems; Oncogenes and cancer.</li> </ul>							
18Hours	Concepts in: Developmental genetics; Behavioral genetics; Population genetics andQuantitative genetics. DNA damage and repair mechanisms, inherited human diseases and defects in DNA repair.							
18Hours	chromo	ion:Duplicatio	ns,deficiencies/deletion ons in crop evolution; 1	s, inversions interchan	romosomes; Chromosoma nges/translocations; Role o s, polyploids and aneuploids			

	1. Preparation of mitotic and meiotic spreads and analysis of various stages of cell division(Phlox,					
WORK(PD3-	Allium and Rhoeo).					
RK()	2. Extraction of genomic DNA from plants by CTAB method.					
IOV	3. Analysis of molecular polymorphism in parental lines and derived mapping populationusing					
801)	different types of molecular markers.					
101 8	4. Construction of a linkage map using available data.					
LABORATORY 801	5. Mutagenesis experiments in <i>E. coli</i> .					
ABO	6. Experiments in Neurospora/ Drosophila genetics.					
$\mathbf{\Gamma}_{i}$						
	1. Acquaah G (2007). Principles of Plant Genetics and Breeding, Blackwell Publishing Ltd.USA.					
	2. Allard RW (1999). Principles of Plant Breeding (2nd Edition), John Wiley and Sons.					
	3. Hartl DL and Jones EW (2007). Genetics – Analysis of Genes and Genomes, 7th edition, Jones					
S	and Barlett publishers.					
NIC	4. Hartwell LH, Hood L, Goldberg ML, Reynolds AE, Silver LM, Veres RC (2006). Genetics -					
EAI	From Genes to Genomes, 3rd edition, McGraw Hill.					
SUGGESTED READINGS	5. Lewin B (2008). Genes IX, Jones and Barlett Publishers.					
STE	6. Singh RJ (2002). Plant Cytogenetics, 2nd edition, CRC Press.					
GE	7. Smartt J and Simmonds NW (1995). Evolution of Crop Plants (2nd Edition) Longman.					
SUG	8. Strickberger MW (2008). Genetics, 3rd Edition, Pearson (Prentice Hall).					
	9. Weising K, Nybom H, Wolff K and Kahl G (2005) DNA Fingerprinting in Plants: Principles,					
	Methods and Applications, 2nd ed. Taylor and Francis Group, Boca Raton, FL.					

## Advance in Archegoniate (Bryophyta and pteridophyta) Course Code: - PD3-802

Course Outcome: -After completion of this course students will gain knowledge of -

Co1 – The characters, distribution, classification and regeneration in Bryophytes and pteridophytes.

Co2 – General characters, classification and reproduction of different ovule mosses, sphagnales and polytrichales.

Co3 – The classification of pteridophytic classes and the morphological and anatomical characters of genus included in the different pteridophytic order.

Co4 - Economic Importance of Bryophyte and gain knowledge about fossil pteridophytes.

Co5- Students will also know how the stele evolution occurs in pteridophytes and also familiar with the work done by Indian pteridologist.

Co6- They will understand the techniques and good lab practices for working in a laboratory and develop skills for preparation of slides.

Co7- Can prepare herbaria of bryophytes and pteridophytes for business purpose.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1				٧	V		
PO2	٧	V	٧				
PO3							
PO4							V
PO5				V			V
PO6					٧		
PO7						٧	
PO8						V	

M.Sc	. (BOTANY)	IINDSEMESTER								
COU	RSE CODE: PD3-802	PAPER - II COURSE TYPE: CCC								
	COURSE TITLE: ADVANCES	IN ARCHEGONIATAE								
	(BRYOPHYTA AND P	TERIDOPHYTA)								
	CREDIT:6+3	HOURS:90+45								
THE	ORY: 6 PRACTICAL:3	THEORY:90 PRACTICAL: 45								
	MARKS									
	THEORY: 100 (70+30)	PRACTICAL:100/2								
Sche	eme of Marks:									
i.	Short Answer type questions: Three question	s carrying 5 Marks each to be asked two to be								
	attempted. (Word Limit 100 Word)									
ii.	Middle Answer type questions: Three question	ons carrying 9 Marks each to be set asked two to								
	be attempted. (Word Limit 250 Word)									
ii	iii. Long Answer type questions: Five questions carrying 14 Marks each to be set three to be									
	attempted. (Word Limit 700 Word)									
sri	Bryophytes: General characters, structure, distribution, reproduction, classification and life histor									
18 Hours	of following groups of Bryophytes Marchantiales, Jungermanniales, Anthocerotales.									
18										
ur	General account, classificationand life cycle of	mosses- sphagnales; sphagnum, andreaeales -								
18Hour s	andreaea, funariales: funaria, polytrichales: Polytr	ichum.								
18										
S	Pteridophytes: General character, reproduction,	classificationand life cycleof following groups of								
18 Hours	Pteridophytes psilotales- psilotum, Isoetales-	- Isoetes, Ophiogolossales- Ophiogolossum,								
181	Protoleptosporangiopsida - Osmunda, Gleichenia,									
	General character, reproduction, classification a	nd life cycle of Dryopteris. Pteris, Marsileales.								
18Hours	salviniales, Azollaceae. Morphological divers									
18H	Pteridophytes. Model system in Osmunda, Marsile									
	Economic and ecological importance of bryop									
S.	heterospory and origin of seed habit in pteridophy									
18Hours	necerospory and origin of seed naor in prehuopity	a. Apoganiy and apospory, coar formation.								
18I										

	1.	Study of structural modification in marchantiales, Jungermanniales, Isobryales and								
802		Hypnobryales.								
D3-	2.	Regeneration experiments, Effect of light, sugars and pH on regeneration.								
RK(1	3.	Growth forms, water-holding capacity.								
VOF	4.	Effect of bryophyte extract on the growth of microbes.								
N V	5.	Pollution Monitoring.								
LABORATORY WORK(PD3-802)	6.	Systematics in bryophytes and Pteridophytes.								
RA	7.	Cytological studies on bryophyte and ferns.								
ABO	8.	Evolution of reproductive pathways in Gymnosperms.								
$\mathbf{L}_{i}$	9. Spore viability test, Male and female cone and pollen study in gymnosperms.									
	1.	Shaw AJ and B Goffinet(2000) Bryophytes Biology. Cambridge University Press.								
GS	2.	Geissler and Greene SW(1982)Bryophyte Taxonomy, methods, practices and floristic								
DIN		exploration. J Cramer, Germany.								
EAI	3.	Dyes AF (Ed) (1979). The experiment Biology of ferns. Academic London.								
DR	4.	Richardson DHS (1981) The Biology of mosses. John Wiley & Sons, Inc New York.								
SUGGESTED READINGS	5.	Bhatnagar SP and Moitra A (1996) Gymnosperms. New Age International (P) Limited,								
GE		Publishers, New Delhi.								
SUG	6.	Singh Hardev (1978) Embryology of Gymnosperms. Encyclopedia of Plant Anatomy. Vol.								
		X Gebruder Borntraegrl, Berlin, Stuttgart.								

## **Gymnosperm**

## (Course Code: - PD3-803)

Course Outcome: - After completion of this course: -

Co1 – Student can gain the knowledge of evolution of gymnosperms and know about used less and fruit less seed plants.

Co2 – Student can gain the knowledge of the characters, distribution and classification of gymnosperms.

Co3 –Will understand the meaning of fossil and its use in the determination of age of plant material, understanding the applied knowledge and different aspect of paleo botany.

Co4 – Students can critically differentiate fossil and living fossil. Students will also understand the evolutionary tendencies and comparative morphology of cycadeoidales and cordaitales. Students can critically differentiate the character of different order of Gymnosperms.

Co5 – Student can gain knowledge of seed technology of conifers, somatic embryogenesis and litter decomposition.

Co6- Student can understand the techniques and lab practices for working in field and can initiate his laboratory of slide preparation and can sell the slide to the market

Co7-Develop skill for preparation of Plant Gymnosperm Herbarium.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1	٧			V			
PO2	V	V			V		
PO3							V
PO4			٧				
PO5							V
PO6							
PO7			٧			٧	
PO8						٧	

15 FICAL: 45 00/2									
FICAL: 45									
FICAL: 45									
00/2									
00/2									
ked two to be									
set asked two to									
three to be									
attempted. (Word Limit 700 Word)									
<b>Introduction:</b> Gymnosperms, the vessel-less and fruitless seed plants varying in the structure of									
le gametophytes,									
classification and									
Classification of Coulter and chamberlain(1917), Chamberlain(1934), D.D. Pant (1957), Taylor									
Medullosaceae,									
ales, Ephedrales,									
synthetic seeds									
composition rate.									

	1.	Study of structural modification in marchantiales, Jungermanniales, Isobryales and								
803		Hypnobryales.								
D3-	2.	Regeneration experiments, Effect of light, sugars and pH on regeneration.								
KK(I	3.	Growth forms, water-holding capacity.								
VOR	4.	Effect of bryophyte extract on the growth of microbes.								
ΥV	5.	Pollution Monitoring.								
LABORATORY WORK(PD3-803)	6.	Systematics in bryophytes and Pteridophytes.								
RA	7.	Cytological studies on bryophyte and ferns.								
ABO	8.	Evolution of reproductive pathways in Gymnosperms.								
$\mathbf{L}^{l}$	9.	Spore viability test, Male and female cone and pollen study in gymnosperms.								
	1.	Shaw AJ and B Goffinet (2000) Bryophytes Biology. Cambridge University Press.								
•	2.	Geissler and Greene SW (1982) Bryophyte Taxonomy, methods, practices and floristic								
TEI		exploration. J Cramer, Germany.								
GES	3.	Dyes AF (Ed) (1979). The experiment Biology of ferns. Academic London.								
<b>SUGGESTED</b> <b>READINGS</b>	4.	Richardson DHS (1981) The Biology of mosses. John Wiley & Sons, Inc New York.								
S										

## **Research methodology and computer Application Basics**

(Course Code: - PD3-804)

**Course Outcome:** – This course is an optional but compulsory for completion of the degree. The student can co-relate the knowledge gained in this subject with his principled subject.

Co1 – After completion of this course students will be able to gain the basic knowledge of research and also know how to prepare a research proposal and selection of problem.

Co2 – Student will be able to know about the different tools of research and also gain the knowledge of different sampling technique.

Co3 – student will be able to gain the knowledge of different method of research which is important for completion of research.

Co4 – Student will be able to understand the measurements of data and interpretation of results and they also know how to research report writing.

Co5 – Student will be able to understand the fundamental of computer system they know about the different parts of computer system like hardware and software they also gain the knowledge of ms windows and control panel of operating system of computer.

Co6- Student will be able to understand the team attitude and will learn time management.

C07- Student will be able to start a venture of computer system

PO	C01	CO2	CO3	CO4	CO5	CO6	CO7
PO1			٧				
PO2	٧			٧	V		
PO3						٧	
PO4							
PO5							V
PO6	V						
<b>PO7</b>		V		٧	V		
PO8		٧				٧	

COU	URSE CODE: PD3-8	804PAPER-IV COURSE TY	PE: OSC					
	COURSE TITLE: R	ESEARCH METHODOLOGY	<b>&amp; COMPUTER APPL</b>	ICATION: BASICS				
	CRE	CDIT:6	HOURS:90					
THE	ORY: 6	PRACTICAL:00	THEORY:90	PRACTICAL: 00				
		MARK						
	THEORY	: 100 (70+30)	PRAC	FICAL:00				
Sch	eme of Marks:							
i.		ype questions: Three questions	s carrying 5 Marks each	to be asked two to be				
	I ·	rd Limit 100 Word)						
ii		type questions: Three questio	ns carrying 9 Marks eac	ch to be set asked two to				
	<b>.</b> .	Word Limit 250 Word)						
ii	6	ype questions: Five questions of	carrying 14 Marks each	to be set three to be				
	attempted. (Wo	rd Limit 700 Word)						
	Concept of researc	h: Meaning and characteristic	s of research, steps in re	esearch process, Types of				
	research - (i) Basic,	applied and action research (i	i) Quantitative and qual	litative research, Areas of				
SLI	research in concern	discipline.						
18 Hours	Selection of probl	em for research: Sources of	of the selection of the	problem, Criteria of the				
18 ]	selection of the pro-	selection of the problem, Drafting a research proposal, Meaning and types of variables, Meaning						
	and types of hypotheses.							
	·····							
	Tools of research: Meaning and general information about construction procedure of (i)							
	Questionnaire, (ii) Interview, (iii) Psychological test, (iv) observation (v) Rating scale (vi) Attitude							
s	scale and (vii) check list, Advantages and disadvantages of above tools.							
18Hours	Sampling: Meaning of population and sample, Importance and characteristics of sample, Sampling							
18H	techniques - i) Probability sampling: random sampling, stratified random sampling, systematic							
	sampling, cluster sampling. ii) Non-probability sampling: incidental sampling, purposive sampling,							
	quota sampling.							
rs	Method of researc	h: Meaning and conducting	procedure of following	methods of research :				
noH	Historical method, Survey method , Case study , Causal comparative method , Developmental							
18 Hours	methods, Experimental methods							
1								

	Treatment of data: Level of measurements of data, steps in treatment of data: editing, coding,				
18Hours	classification, tabulation, analysis and interpretation of results.				
	Writing research report: Sections of report: Preliminary section, Content section: various				
181	chapters, Supplementary section: appendices, references, abstract, Format and style.				
	Computer Fundamentals Computer System: Features, Basic Applications of Computer,				
	Generations of computers.				
	Parts of Computer System: Block Diagram of Computer System; Central Processing Unit (CPU);				
	Concepts and types of Hardware and Software, Input Devices - Mouse, Keyboard, Scanner, Bar				
	Code Reader, track ball; Output Devices - Monitor, Printer, Plotter, Speaker; Computer Memory -				
	primary and secondary memory, magnetic and optical storage devices.				
	Operating Systems - MS Windows: Basics of Windows OS; Components of Windows - icons,				
	taskbar, activating windows, using desktop, title bar, running applications, exploring computer,				
	managing files and folders, copying and moving files and folders; Control panel: display				
	properties, adding and removing software and hardware, setting date and time, screensaver and				
	appearance; Windows Accessories: Calculator, Notepad, WordPad, Paint Brush, Command				
SJI	Prompt, Windows Explorer.				
18Hours					
181					
(	Office Software Package Word Processing - MS Word: Creating, Saving, Opening, Editing,				
-804)	Formatting, Page Setup and printing Documents; Using tables, pictures, and charts in Documents;				
	Using Mail Merge sending a document to a group of people and creating form, letters and label.				
KK(I	Spreadsheet - MS Excel:Opening a Blank or New Workbook, entering data/Function/ Formula				
LABORATORY WORK(PD3	into worksheet cell, Saving, Editing, Formatting, Page Setup and printing Workbooks.				
	Presentation Software - MS Power Point: Creating and enhancing a presentation, modifying a				
	presentation, working with visual elements, adding Animations & Transitions and delivering a				
RAJ	presentation.				
BO					
LA					

Agrawal, Y. P. (1988). Better sampling: Concepts, Techniques and Evaluation. New Delhi:
sterling Publishers Private Ltd. Best, J. W. (1993).
Research in Education (6 th ed.) New Delhi: Prentice-Hall of India Pvt. Ltd.
Broota, K. D. (1992) Experimental design in Behavioral Research (2 nd ed.)
New Delhi: Wiley Eastern Limited.
Dasgupta, A. K. (1968). Methodology of Economic Research. Bombay: Asia Publishing House.
Edwards, A. L. (1957). Techniques of Attitude Scale construction. New York: Appleton-Contury
Gall, M. D., Gall, J. P. and Borg, W. R. (2007). Educational Research: An introduction
(8 th ed.) Coston: Allyn and Bacon.
Garrett, H. E. & Woodworth, R. S. (1969). Statistics in Psychology and Education. Bombay:
Vakils, Fecffer & Simons Pvt. Ltd.
Goode, W. J. & Hatt, Paul K. (1952). Methods in Social Research. New York: McGraw-Hill.
Gopal, M. H. (1964). An Introduction to research Procedure in Social Sciences. Bombay: Asia
Publishing House.
Hillway, T. (1964) Introduction to Research (2 nd ed.) Noston : Houghton Miffin.
Hyman, H. H., et al. (1975). Interviewing in Social Research.
Chicago: University of Chicago Press.
Kerlinger, F. N. (1983) Foundation of Behavioural Research. (2 nd Indian Reprint)
New York: Holt, Rinehart and Winston.
Kothari, C. R. (2007) Research Methodology: Methods & Techniques (3rd ed.)
New Delhi: Wishwa Prakashan.Fundamentals of Computers, Dr. P. Mohan, Himalaya Publishing
House.
Microsoft First Look Office 2010, K. Murray, Microsoft Press.
Fundamental Of Research Methodology And Statistics, Y.K. Singh, New Age
International (P) Limited, Publishers.Practical Research Methods, Dr Catherine Dawson, The
Essence Of Research Methodology, Jan Jonker & Bartjan Pennink, Springer.

# SUGGESED READINGS

# (Course Code: - PD3-806)

Course Out Come: -After completion of this course-

Co1 – Students will beable to understand the structure nutrition and reproduction of Bacteria, virus, cyanobacteria and phytoplasma and identity them.

Co2 – Student will gain understanding of classification. Structure and reproduction of fungal species from different classes of fungi.

Co3 – Student will gain understanding of classification nutrition, structure and reproduction of different sub classes of class ascomycetes.

Co4 – Student will gain knowledge of imperfect fungi and the member of Basidiomycetes.

Co5- Student will understand the techniques and good lab practices for working in a laboratory and can develop Skill in Slide Preparation.

Co6- Student will develop skills for identifying fungal genera and using them for industrial purposes along with learns to identify fungal disease on the basis of symptoms.

Co7- Can initiate his own fungal culture laboratory and can start own enterprise on fungal products.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1							
PO2	٧	V		V			
PO3							
PO4			V				
PO5						V	V
PO6							
PO7					٧	٧	
PO8					V		

	(BOTANY)		IINDSEM	ESTER		
COU	RSE CODE: PD3-806	PAPER - V COURSE T				
		COURSE TITI				
	CREDIT	[:6+3	HC	)URS:90+45		
THE	ORY: 6	PRACTICAL:3	THEORY:90	PRACTICAL: 45		
		MARI				
	THEORY: 10	0 (70+30)	PRAC	CTICAL:100/2		
Sche I.	me of Marks: Short Answer type	questions: Three questio	ns carrying 5 Marks ea	ch to be asked two to be		
	attempted. (Word ]	Limit 100 Word)				
II	. Middle Answer typ	be questions: Three quest	ions carrying 9 Marks e	each to be set asked two to		
	be attempted. (Wo	rd Limit 250 Word)				
II	I. Long Answer type	questions: Five question	s carrying 14 Marks ead	ch to be set three to be		
	attempted. (Word ]	Limit 700 Word)				
S	Microbiology: General account, ultra-structure, nutrition and reproduction, biology and economic					
18 Hours	importance of Bacteria, Cyanobacteria, Viruses and phyto-plasma.					
18						
sın	Mycology: General cl	naracters and reproduction	n of fungi, classificati	ion, nutrition and economic		
18Hours	importance of fungi.					
I	General account of following groups of fungi: Class myxomycetes, chytridiomycetes,					
	Omycetes, zygomycetes.					
rs	General account of class ascomycetes: Sub- class hemiascomycetidae, sub-class					
18 Hours	Euacomycetidae, series plectomycetes, pyrenomycetes, discomycetes.					
sı	General account of class: Deuteromycetes class Basidiomycetes, sub-class-					
18Hours	Heterobasidiomycetidae, Homobasidiomycetidae.					
18Hours	The Lichens: Introduc	ction, Types, Structure, R	eproduction and Econo	mic Importance		

(9	1.	Slide Preparation: Identication and study of external and internal structure of fungi.
3-80		Phytophthora, Mucor, Rhizopus,
WORK (PD3-806)	2.	Saccharomyces, Aspergillus,
RK	3.	AgaricusPezziza, Puccinia;
[OM	4.	Alternaria. Cercospora,
RY	5.	Preparation of the project on diseased leaf with their symptoms
[OL	6.	Isolation and identification of pathogen from fungal diseased leaf.
ABORATORY		
ABC		
Γ		

	1.	Acquaah G (2007). Principles of plant Genetics and Breeding, Blackwell Publishing Ltd.
		USA.
70	2.	Allard RW (1999). Principles of plant breeding (2 nd Edition), john Wiley and Sons, ISBN
SSN		0471023094, 9780471023098.
READINGS	3.	Hartl and Jones (2007). Genetics-Analysis of Genes and Genomes, 7th edition, Johns and
RE.		Barlett publishers.
SUGGESTED	4.	Hartwell, Hood, Goldberg, Reynolds, Silver, Veris (2006). Genetics-From Genes to
		Genomes, 3 rd edition, McGraw Hill.
	5.	Lewin B (2008). Genes IX, Jones and Barlett Publishers, ISBN-10: 0763740632.
	6.	Ram J. Singh (2002). Plant Cytogenetics, 2 nd edition, CRC Press.
	7.	Simmonds (1995). Evolution of Crop Plants (2 nd edition) Longman.
	8.	Strickberger (2008). Genetics, 3 rd edition, Pearson (Prentice Hall).

• M. Sc. In BOTANY

#### FACULTY OF SCIENCE

• THIRD SEMESTER (ODD SEMESTER)

Eligibility Criteria (Qualifying	Course Code	Course Type	Course (Paper/Subjects)		Contact Hours Per Week			EoSE Duration (Hrs.)	
Exams)					L	Т	Р	Thy	Р
e	PD3-901	CCC	DEVELOPMENTAL BIOLOGY	6	4	2	00	3	00
tion ers	PD3-902	CCC	SYSTEMATICS, EVOLUTION AND TAXONOMY	6	4	2	00	3	00
semester examination back/ arrear papers	PD3- 901&PD3- 902	CCC	LAB – C :- DEVELOPMENTAL BIOLOGY & SYSTEMATICS, EVOLUTION AND TAXONOMY (PRACTICAL)	3	00	00	3	00	3
er e arr	PD3-903	CCC	PRINCIPLES OF ECOLOGY		4	2	00	3	00
in the Second semest any number of back/	PD3- 903&PD3- 905	CCC & ECC/CB	LAB – D :- PRINCIPLES OF ECOLOGY & PATHOGENS AND PESTS OF CROP PLANTS (PRACTICAL)	3	00	00	3	00	3
Second mber of	PD3-904	OSC	INTELLECTUAL PROPERTY RIGHTS	6	4	3	00	3	00
the (	PD3-905	ECC/CB	PATHOGENS AND PESTS OF CROP PLANTS						
an	PD3-906	ECC/CB	TRIBAL STUDIES	6				3	00
After appearing in the irrespective of any nu	PD3-907	ECC/CB	BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOSTATISTICS		4	3	00		
ppe	PD3-908	ECC/CB	GENOMICS AND PROTEOMICS IMMUNOLOGY						
r aj esp	PD3-909	ECC/CB							
Afte irre	MINIMUM	I CREDITS	S IN INDIVIDUAL SUBJECT IS 6 AND IN COMPLETE SEMESTER IT WOULD BE 30	TOTAL= 36					

# **Developmental Biology**

(Course Code:- PD3-901)

Course Out Come: - After completion of this course-

Co1 – Student will be able to know about plant anatomical structure, their development. They will also understand how growth of root and shoot apical meristem takes place.

Co2 – Structure will get knowledge about the various arrangement of leaf in plants. They will have developed knowledge about vascular tissues and its constituents by section and maceration, wood anatomy T.S., TLS, RLS. They also know about secretary tissues, laticifers, stomata and trichomes.

Co3 – Student will understand the floral architecture and how flowering takes place. They will also know about seed and fruit anatomy and evolution of seed.

Co4 – Student will able to know about mechanical tissue (collenchymas, sclerenchyma) and also understand the normal and anomalous secondary growth.

Co5 – Student will able to know about the mechanism of dormancy and overcoming the dormancy and also understand the mechanism of program cell death.

Co6-Student will able to understand the techniques and lab practices for working in field of Anatomy.

Co7- Student will able to Develop skills for preparation of Slides and can initiate his laboratory of slide preparation

PO	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1		٧	V				
PO2	V		V	٧	V		
PO3							
PO4							
PO5							٧
PO6	٧						
PO7		٧				٧	
PO8						V	

M.Sc	I.Sc.(BOTANY) IIIRD SEMESTER									
COU	RSE CODE: PD3-9	01PAPER - I	CO	DURSE TYPE: CCC						
	COURSE TITLE: DEVELOPMENTAL BIOLOGY									
	CREDI	<b>Г:6+3</b>		HOURS:90+45						
THE	ORY: 6	PRACTICAL:3	THEORY:90	PRACTICAL: 45						
	MARKS									
	THEORY: 1	00 (70+30)	PI	RACTICAL:100/2						
	eme of Marks:									
VI	•		tions carrying 5 Ma	rks each to be asked two to be						
		rd Limit 100 Word)								
vi			estions carrying 9 N	Iarks each to be set asked two to be						
	<b>.</b> .	rd Limit 250 Word)								
ix			ons carrying 14 Ma	rks each to be set three to be						
	allempled. (wo	rd Limit 700 Word)								
rs	Vascular plants: P	lant body and its develop	oment, The tissue, I	Meristem, RAM, SAM; patterns of						
Iou	cell fate, determinat	on and lineage in root an	d shoot, The tissue s	system (differentiation of epidermis						
18 Hours	with special reference	e to stomata, trichrome a	nd mesophyll). secr	etory ducts and laticifers tissue						
	Leaf growth and	differentiation: Theorem	ries of structural	development and differentiation,						
s	development of leaf	, and branches. Anatomy	of dicotyledonsand	d monocotyledons leaf, anatomy of						
Hours	Gymnosperms leaf,	Gymnosperms leaf, anatomy of petiole, Anatomy of the phyllode.								
18H	Root and Shoot: Internal organization of Root and stem, secondary growth; wood development and									
	its diversity; cambial variants. Root –stem transition.									
	Development of flo	wer: Origin of Reproduc	ctive shoot apex, Tra	ansition to flowering (vegetative to						
urs	reproductive evocation), floral homeotic mutations in Arabidopsis and Antirrhinum plants, axis									
18 Hours	development in flow	er; flower; patterns of eve	olution in seed.							
18	Anatomical adaptati	Anatomical adaptation for special habitats(Xerophytes and Hydrophytes)								
	Anatomy in Relation	on to Taxonomy: Hairs,	stomata, Epidermal	cell and Hypoderm, Veins petiole,						
S	cork endodermis, sc	lerenchyma of pericycle	, width of medulary	y rays, bicolleteral bundle, cortical						
18Hours	and medullary bund	es								
181	Anamolous seconda	ry thickening.								

	Latent life-dormancy: Importance and types of dormancy, seed dormancy, overcoming seed						
	dormancy, bud dormancy.						
18Hours	Senescence and programmed cell death (PCD): Basic concepts of senescence and metabolic						
8Ho	changes associated with senescence, influence of hormones and environmental factors on						
I	senescence.						
	Types of cell death, PCD in the life cycle of plants						
	1. Study of morphology and anatomy of thalloid and leafy forms of Bryophytes; Study of						
	protonema.						
	2. Study of fern gametophyte and soral variations.						
	3. Comparative anatomy of conifers and gnetales.						
	4. Study of apical meristems with the help of dissections, whole mount preparations, sections						
	and permanent slides.						
	5. Origin and development of epidermal structures (trichomes, glands and lenticels).						
	6. Study of xylem and phloem elements using maceration, staining, light and electron						
	micrographs (xerophytes, hydrophytes and halophytes).						
ATORY WORK(PD3-901)	7. Study of secretory structures (nectarines and laticifers).						
PD3	8. Study of secretory structures (normal and unusual) of selected woods with the help of wood						
<b>RK</b> (	microtome and permanent slides.						
NOI	9. Study of the stages of pollen and ovule development in the wild and mutant plants using						
SY I	permanent slides, electron micrograph and available phenotypes.						
TOI	10. Pollen in vitro germination methods: Sitting drop culture, suspendion culture, surface						
<b>RA</b>	culture.						
LABOR	11. Correlation between fertility (stainability), viavility (TTC and FDA staining) and						
Γ	germinability (in vitro) of pollen grains.						
	12. Assessment of stigma receptivity by localizing peroxidases, non-specific esterases and						
	phosphatases.						
	13. Aniline blue fluorescence method to localize pollen tubes to study different aspects of						
	pollen-pistil interaction.						
	14. Use of DNA fluorochromes to localize nuclei during pollen and ovule development.						
	15. Study of post-fertilization stage with the help of permanent slides and electron micrographs.						
	16. Dissection of embryo and endosperm.						
L							

	1. Anderson RA (2005) Algal culturing techniques. Physiological society of America. Elsevier
	academic press, USA.
	2. Bhatnagar SP and Moitra A (2005) Gymnosperms. New age interactive (P) Ltd. Publishers,
	New Delhi.
	3. Carlquist S (2001) Comparative wood anatomy, springer-verlag, germany.
	4. Cutler DF (1978). Applied plant anatomy, Longman, United Kingdom.
	5. Cutler EG (1978). Plant anatomy, part I&II, Edward Arnold, United Kingdom.
	6. Dickinson WC (2000). Integrative plant anatomy, Harcourt academic press, USA.
	7. Fahn A (1974) Plant anatomy, pergmon press, USA&UK.
	8. Fosket DE (1994) Plant, growth and Development: A molecular Approach, Academic Press.
SUGGESTED READINGS	9. Fritsch FE (1935, 1945). The structure and Reproduction of algae vols. I and II. Cambridge
ADI	University press, cambridge, UK.
RE	10. Hopkins WG (2006). The green world: Plant development, Chelsea house publication.
IED	11. Howell SH (1998) Molecular genetics of plant development, Cambridge university press.
ES	12. Leyser O and Day S (2003) Mechanism of plant development, Blackwell press.
JGG	13. Mauseth JD (1988). Plant anatomy, the Benjamin/cummings publisher, USA.
IS	14. Nair MNB (1998). Wood anatomy and Major uses of wood, faculty of forestry, university of
	putra Malaysia, Malaysia.
	15. Parihar NS (1993) An introduction to embryophytavol I-bryophyta, volI-pteridophyta,
	central book dept. Allahabad.
	16. Raghavan V (2000) developmental biology of flowering plants, springer, Netherlands.
	17. Raghavan V (1997) Molecular embryology of flowering plants. Cambridge. University
	press.
	18. Richards AJ (1986) Plant breeding system, George allen and Unwin.
	19. Shivanna KR (2003) pollen biology and biotechnology, science publishers.

# **Systematics Evolution and Taxonomy**

(Course Code: - PD3-902)

Course Out Come: - After completion of this course-

Co1 – Students will be able to know the probable ancestors of angiosperms, extinct species and also they will also understand adaptive features and technicality of international code of Botanical nomenclature.

Co2 – Student will be able to understand the various characters of plants are used as taxonomic evidence for the classification.

Co3 – Student will be able to understand how to prepare herbarium sheet and how to read floras. They will also get knowledge about monocotyledous family members.

Co4 – Student will be able to understand the differences between unisexuales and bisexuales members of dicotyledons.

Co5 – Student will able to understand the major system of classification with their merits and demerits.

Co6- Student will able to Understand the techniques and lab practices for working in field along with develop skills for preparation of Herbarium and can make own herbaria of that region.

Co7- They can initiate his laboratory of slide preparation and can sell the slide to the market.

РО	CO1	CO2	CO3	<b>CO4</b>	CO5	CO6	CO7
PO1	٧					V	
PO2	٧	V	V	V			
PO3							
PO4						V	
PO5							V
PO6					V		
PO7						V	
PO8			٧				

	. (BOTANY) ESTER	Ш	IRD				
COU	RSE CODE: PD3-902 PAI	PER - II C	COURSE				
TYP	E:CCC COURSE TITLE: SYSTEMATICS,	EVOLUTION AND TAXONOMY					
	CREDIT:6+3	HOURS:90+45					
тне	ORY: 6 PRACTICAL:3	THEORY:90 PRACTICAL	• 15				
	MAR		L. <b>H</b> J				
	<b>THEORY: 100 (70+30)</b>	PRACTICAL:100/2					
Sche	me of Marks:						
i.	Short Answer type questions: Three question	ns carrying 5 Marks each to be asked tw	vo to be				
	attempted. (Word Limit 100 Word)						
ii	Middle Answer type questions: Three quest	ions carrying 9 Marks each to be set ask	ked two to be				
	attempted. (Word Limit 250 Word)						
iii	. Long Answer type questions: Five question	s carrying 14 Marks each to be set three	to be				
	attempted. (Word Limit 700 Word).						
	Systematics and Evolutionary Biology: Hist	ory of developments in taxonomy:	Systematics-				
urs	concepts and component; Salient features of the international code of botanical nomenclature;						
18 Hours	Species and speciation. Classification system of taxonomy(Artificial, Natural and Phylogenetic),						
19	Important classification of taxonomy(Engler pra	ntl, Bentham and hooker)					
	The species concepts: Taxonomic hierarchy, sp	ecies, genus, family and other categorie	es, principles				
sı	used in assessing relationship, delimitation of tax	a and attribution of rank. Concept of ty	pification.				
18Hours	Taxonomic evidence: Morphology, Anatomy, Palynology, Embryology, Cytology, Phytochemistry,						
18	Genome analysis and nucleic acid hybridization.						
S	Taxonomic tools: Herbarium(Concept and me		cal diversity-				
18 Hours	concepts and applications. Important botanical garden and herbaria.						
18 H	Monocotyledons: Microspermae, Epigynae, Coro	onarieae, Calycineae and Glumaceae.					
			D (d) 1				
nrs	<b>Dicotyledons:</b> Order-Ranales, Peritales, Umbellales, Myrtales, Rubiales, Asterales, Genti	• •	Passiflorales,				
18Hours	Unidenales, Myrtales, Rudiales, Asterales, Genti	ales, Polymoniales, Lannales, and Unise	exuales.				
I			1 11 1				
SJ	Systems of angiosperm classification: Phe						
18Hours	taxonomy, relative merits and demerits of major	systems of classification, relevance of	taxonomy to				
18	conservation.						

	1.	Live plants/Herbarium specimens of the following families will be provided in the class for
902		description and identification (classification based on APGII, 2003): Basal angiosperm and
D3		magnokids: Monocots: Commelinids: Basal Eudicots and Caryophyllids: Ranunculaceae,
<b>RK(I</b>		Rosids: Asterids.
NOI	2.	Techniques in molecular systematics.
SY I	3.	Phylogenetic analyses using PAUP.
TOI	4.	Local flora study.
<b>JRA</b>	5.	Basice of GIS, Remote sensing data-visual and digital interpretation for vegetation type,
LABORATORY WORK(PD3-902)		delineation of ecosystem using RS and GIS technology, temporal dynamics and models.
	1.	Angiosperm Phylogeny group (2003) An update of the angiosperm phylogeny group
		classification for the orders and families of flowering plants: APG II. Botanical Journal of
		the Linnaean Society 141:399-436.
	2.	Cracknel AP, Hayes L (2009) Introduction to Remote sensing. CRC press, Boca Raton, USA
		(special Indian edition).
	3.	Crawford DJ (2003) Plant molecular systematic. Cambridge University press,
		Cambridge,UK.
	4.	Cronquist A (1981) An integrated system of classification of flowering plants. Columbia
S		university press.New York.
ONI	5.	Hollingsworth PM, Bateman RM and Gornall RJ (1999). Molecular systematic and plant
EAD	-	evolution. Taylor and Francis, London.
D R	6.	Judd WS, Campbell CS, Kellogg EA, stevens PA and Donoghue MJ (2002) Plant
STE	7	systematic: A Phylogenetic approach, sinauer associates, Inc, Massachusetts.
SUGGESTED READINGS	1.	Nei M and kumar S (2000) molecular evolution and phylogenetics. Oxford university
SUG	8	press.New York. Raven PH, Begr LR, Hassenzahl DM (2008) environment. 6 th edition John wiley& Sons, Inc.
	0.	New York.
	9.	
		. Simpson MG (2006) Plant systematic. Elsevier, Amsterdam.
		. Stuessy TF (2008) Plant Taxonomy: The systematic evaluation of comparative Data.
		Columbia university press, New York.
	12	. Swafford DL (2001) PAUP. Phylogenetic analysis using parsimony (and other methods),
		version 4. Sinauer Associates, Sunderland.
L	1	

# Principles of Ecology (Course Code: - PD3-903)

Course Outcome: - After completion of this course-

Co1 – Student will be able to understand the growth and characteristics of population and limiting factors which are affect the population.

Co2 – Student will have developed knowledge about structure and function of ecosystem. They also will understand about bio geo chemical cycle in environment and its role.

Co3 – Student will be able to understand the vegetative organization in community. Student will get to know analytical and synthetic characters of community.

Co4 – Student will have developed knowledge about Biological conservation and its management by in situ and ex-situ conservation.

Co5 – Student will get knowledge about local plant diversity and its socio-economic importance.

Co6- Student will differentiate the Hydrophytes, Xerophytes and Halophytes on the basis of Anatomical characters.

Co7- Student will understand the difference in pH in different soil and can determine Frequency, density and abundance of plant community.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1				٧			
PO2	V		V			V	
PO3							
PO4		V					
PO5					V		V
PO6			V				
<b>PO7</b>							
PO8				V			V

-	e. (BOTANY)	IIIRD SEMESTER						
COU	RSE CODE: PD3-903PAPER - III	COURSE TYPE: CCC						
	COURSE TITLE: PF	RINCIPLES OF ECOLOGY						
	CREDIT:6+3	HOURS:90						
THE	ORY: 6 PRACTICAL:3	THEORY:90 PRACTICAL: 45						
	Ν	IARKS						
	<b>THEORY: 100 (70+30)</b>	PRACTICAL:100/2						
	eme of Marks:							
i.	Short Answer type questions: Three qu	estions carrying 5 Marks each to be asked two to be						
	attempted. (Word Limit 100 Word)							
ii.	• Middle Answer type questions: Three of	questions carrying 9 Marks each to be set asked two to be						
	attempted. (Word Limit 250 Word)							
iii	i. Long Answer type questions: Five que	stions carrying 14 Marks each to be set three to be						
	attempted. (Word Limit 700 Word).							
	Introduction to ecology, evolutionary ecolo	bgy, environmental concepts – laws and limiting factors,						
rs								
18 Hours	ecological models. Characteristics of population, population size and exponential growth, limits of population growth, population dynamics, life history pattern, fertility rate and age structure,							
18.	pulation growth.							
S		osystem structure and its component, Nature of ecosystem, production, food chain and food webs,						
18Hours	energy flow through ecosystem, Ecological pyramid, biogeochemical Cycles-C,N, P, S, ecosystem							
18F	management. The biosphere, biomes and im	pact of climate on biomes. Litter decomposition.						
	Vegetation organization. Concepts of	community and continuum, analysis of communities						
nrs								
18 Hours	(analytical and synthetic characters),Community interaction,, concept of ecological niche, Ecotone, Ecotype, Law of tolerance, succession, types and its model							
18	Leotype, Law of tolerance, succession, type							
	Biological conservation and managemen	t, conservation-Red data book, ICUN classification and						
	categories.							
urs	In situ conservation: Protected areas in	India – sanctuaries, national parks, biosphere reserves,						
18Hours	wetlands, mangroves and coral reefs for cor	servation of wild biodiversity.						
I	Ex-situ conservation: Principles and prac	ctices; botanical gardens, field gene banks, seed banks,						
	cryobanks.							
S.	Concepts of Phytogeography: Endemism	, Hotspots and hottest hotspots, flagship, Umbrella and						
18Hours	keystone species, invasions and introductio	n of invasion biology, local plant diversity and its socio-						
181	economic importance.							

LABORATORY WORK PD3-903)	<ol> <li>Physical and chemical characters of soil.</li> <li>Assessing influence of light, temperature and moisture on plant germination and growth/animal behaviour and growth.</li> <li>Assessing influence of soil nutrient status on plant germination and growth Community/ecosystem studies:         <ol> <li>Assessment of density, frequency and abundance of plants/animal in a community using various techniques i.e. transect, quadrate etc.</li> <li>Comparison of stands/communities and ordination.</li> <li>Profile diagrams.</li> <li>Biomass and reproductive allocation under various environments.</li> <li>Nutrient uptake and budget for various communities/Food chain assessment.</li> <li>Decomposition of various organic matters and nutrient release mechanisms/role of arthropods and other micro, and macro fauna in decomposition.</li> <li>Understanding ecosystem succession by studying various stages of vegetation/community assemblage's development.</li> <li>Molecular techniques in laboratory.</li> <li>Insect diversity in soil Landscape studies:</li> <li>Principles of GIS and RS technology.</li> <li>Interpretation (visual and automated) of remote sensing information for landscape differentiation.</li> </ol> </li> </ol>
SUGGESTED READINGS	<ol> <li>Conklin, A.R. Jr. 2004. Field Sampling: Principles and Practices in Environmental Analysis.</li> <li>Fahey, T.J. and Knapp, A.K. 2007. Principles and Standards for Measuring Primary Production. Oxford.</li> <li>Grant, W.E. and Swannack, T.M. 2008. Ecological Modeling. Blackwell.</li> <li>Wilkinson, D.M. 2007. Fundamental Processes in Ecology: An Earth system Approach. Oxford.</li> </ol>

٦

### Intellectual property rights (Course Code: - PD3-904)

**Course Outcome:** - This course is an optional but compulsory for completion of the degree student can correlate the knowledge gained in this subject with his principle subject. This gives an opportunity to learn other subjects of his interest which is not offered in his principle subject.

#### Course level learning outcome:-

After the completion of the course, students will be able to understand:-

Co-01:- The concept and development of all forms of I.P.R.

Co-02:- Distinguish and explain various forms of I.P.R.

Co-03:- Identify criteria's to fit one's own intellectual work in particular forms of I.P.R.

Co-04:- Apply statutory provisions to protect particular forms of I.P.R.

Co-05:- Apply the concept and forms of I.P.R. in research field.

**OBJECTIVE:** -The main object of this paper is to introduce the students to the various concepts of Intellectual Property i.e. Copyright, Patent, Trademark, Geographical Indication & Design. The paper also aims to familiarize the students with the procedure of filing of patents and trademark in India. The students will be able to understand various remedies available for infringement of Intellectual property and critically examine the emerging issues in I.P.R.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1	V	٧	V				
PO2	V						
PO3			V	٧			
PO4					V		
PO5				V			
PO6		٧		٧			
PO7							
PO8					٧		

	M.Sc. (BOTANY) IIIRD SEMESTER							
		3-904PAPER - IV	CO	OURSE TYPE: OSC				
	С	OURSE TITLE: INTELLI	ECTUAL PROPERT	TY RIGHTS				
	CR	REDIT:6		HOURS:90				
THE	ORY: 6	PRACTICAL: 0	THEORY:90	PRACTICAL: 00				
			ARKS					
	THEORY	Y: 100 (70+30)	P	PRACTICAL:00				
Sche	eme of Marks:							
i.	i. Short Answer type questions: Three questions carrying 5 Marks each to be asked two to be							
	attempted. (	Word Limit 100 Word)						
ii	. Middle Ans	wer type questions: Three qu	estions carrying 9 Ma	arks each to be set asked two to be				
	attempted. (	Word Limit 250 Word)						
iii	Long Answe	er type questions: Five quest	ions carrying 14 Mark	s each to be set three to be				
	attempted. (	Word Limit 700 Word).						
	Introduction, N	ature, Basic Concepts and	International Conve	ntions :				
S.	Nature and meaning of Intellectual Property, Justification for protection of Intellectual Property							
18 Hours	Rights, Types of Intellectual Property, Leading International instrument concerning protection of							
181	Intellectual Prop	perty: The Berne Convention	on (1886), Rome c	onvention (1961) Trade Related				
	intellectual prope	erty agreement, 1995 (TRIPS	5)					
	Law of Copyrig	ht						
ours	Definition, Subje	ect matter of copyright, Ov	vnership of Copyrigh	t, Term of Copyright, Rights of				
18Hours	Owner, Assignm	ents and Licenses, Infringe	ment of Copyright, I	Remedies against infringement of				
ſ	copyright							
	Law of Patents							
SJI	Meaning, Criter	ia for obtaining patents- Nov	elty, Utility, Non-obvi	iousness				
18 Hours	Non-patentable	inventions, Procedure for	Registration, Term	of patent, Rights of Patentee,				
18	Compulsory lice	nsing and Government use	of patent, Infringeme	nt of patent, Remedies in case of				
	Infringement							
	Law of Tradema	ark						
5	Meaning of mar	k & Trademark, Categories	s of Trademark- Con	ventional and Non-conventional				
18Hours	Marks, Concept	of distinctiveness, Doctrine	of honest concurrent	use, Procedure of registration of				
18H	trademarks and	Term of Protection, Absol	ute and relative gro	unds for refusal of registration,				
	Assignment and	Licensing, Infringement and	Passing off.					

	Geographical Indication (GI) and Design:
sını	1. Geographical Indication- Meaning of GI, Difference between GI and Trademark & Concept of
18Hours	Authorized user
Ι	2. Designs- Meaning of Design Protection, Concept of original design, Term of Protection
	1. V.K Ahuja, Law Relating to Intellectual Property Rights, Lexis Nexis, Haryana, India.
S	2. G.B.Reddy, Intellectual Property Rights and Law, Gogia Law Agency, Hyderabad.
NIC	3. S.R.Myneni, Intellectual Property Law, Eastern Law House, Calcutta
EAI	4. P. Narayanan Intellectual Property Rights and Law (1999), Eastern Law House, Calcutta, India
DR	5. VikasVashistha, Law and Practice of Intellectual Property, (1999) Bharat Law House, New
SUGGESTED READINGS	Delhi.
GE	6.GyanvatiDhakad, BaudhikSampadaVidhiyan (Intellectual Property Laws- Hindi),Central Law
SUG	Publication.

# Pathogen and pests of crop plants

(Course Code: - PD3-905)

Course Outcome: - After completion of this course -

Co1 – Student will understand the characteristics of microorganism like fungi, Bacteria and viruses. They will also develop knowledge their parasitic ability and damage caused by them.

Co2 – Student will get knowledge about symptom of plant diseases and they will also know about pathogenesis.

Co3 - Student will get knowledge about the source of infection and they will also get know about the recurrence of diseases.

Co4- Student will be able to know the importance of environment and nutrition on disease development. They will also get knowledge about how to pathogen disseminate.

Co5-Student will be able Understand the techniques and good lab practices for working in a laboratory and develop skill in slide Preparation of plant disease.

Co6- Student will be able Develop skills for identifying fungal genera and fungal disease on the basis of symptoms, using them for industrial and laboratory purposes.

C06-Student can initiate his own fungal culture laboratory and enterprise on fungal products.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1		V	٧	٧		V	
PO2	V	V					
PO3							
PO4							
PO5					V		٧
PO6			V				V
<b>PO7</b>					V		
PO8				٧		٧	

	e. (BOTANY) ESTER	IIIRD					
	RSE CODE: PD3-905PAPER - V	COURSE TYPE: ECC					
	COURSE TITLE: PATHOGENS A	ND PESTS OF CROP PLANTS					
	CREDIT:6+3	HOURS:90+45					
THE	ORY: 6 PRACTICAL:3	THEORY:90 PRACTICAL: 45					
	MARK	XS					
	THEORY: 100 (70+30) PRACTICAL:100/2						
Sche i.	eme of Marks: Short Answer type questions: Three question	s carrying 5 Marks each to be asked two to be					
	attempted. (Word Limit 100 Word)						
ii	• Middle Answer type questions: Three question	ons carrying 9 Marks each to be set asked two to be					
	attempted. (Word Limit 250 Word)						
ii	<b>i.</b> Long Answer type questions: Five questions	carrying 14 Marks each to be set three to be					
	attempted. (Word Limit 700 Word).						
18 Hours	General characteristics of pests including viruses: General characteristics of fungi, bacteria and viruses, their hetrotrophic behaviour with emphasis on parasitism parasitic ability and virulence. Nature of disease (s) and damage caused.						
	Symptomatology: General symptoms of plant dis	seases, pathogenic and non-pathogenic.					
ours	Pathogenicity: Distribution of plant pathogens, penetration and entry by plant pathogens mode of						
18Ha	infection, inoculum and inoculums potential, Koc	hs postulates.					
	Host parasite relationship: Role of enzymes an	d toxins in pathogenesis. Defence of plant against					
sınc	pathogens, resistance and susceptibility, phytoalexin, disease syndrome.						
18 Hours	Effect of infection on the physiology of the host	t: Permeability, photosynthesis, respiration.					
S	Effect of environment: Predisposition and stres	s, epidemiology and disease forecasting, source of					
18Hours	infection i.e. seed, soil, water and air born diseases of plants, significance of phyllosphere and						
18F	rhizosphere studies, recurrence of diseases.						
S.	Effect of environment and nutrition on disease de	velopment.					
18Hours	Dissemination of plant pathogens.						

	1. Methods of sterilization; Media preparation (selective media); inoculation procedures.				
	2. Characterization of disease symptoms and identification of pathogenic organisms.				
)5 )	3. A study on effects of various formulation and doses of BTK on growth and development of				
3-9(	selected pest species.				
(PD	4. Isolation and identification of rhizosphere soil fungi, seed borne fungi.				
)RK	5. Isolation and estimation of DNA from fungus.				
M	6. Biochemical markers of enhanced resistance.				
JRY	(i) Estimation of total phenols and O-di hydroxy phenols in sugarcane and groundnut.				
ATC	(ii) Estimation of activity of Phenylalanine ammonia lyase in healthy and diseased leaves of				
OR	sugarcane.				
LABORATORY WORK(PD3-905)	(iii) Estimation of deoxyribonuclease and ribonuclease enzymes produced by virus infectedand				
	healthy leaves of tobacco.				
	7. Research paper discussions.				
	1. Agrios GN (2005) Plant Pathology, 5th Edition.				
ED	2. Buchanan B, Gruissem G and Jones R (2000) Biochemistry and Molecular Biology ofPlants",				
<b>JESTED</b>	American Society of Plant Physiologists, USA.				
<b>SUGGESTED</b> <b>READINGS</b>					
SU RI					

• M. Sc. in BOTANY

#### FACULTY OF SCIENCE

• FOURTH SEMESTER (EVEN SEMESTER)

Eligibility Criteria (Qualifyin	Course Code	Course Type	Course (Paper/Subjects)		Contact Hours Per Week			EoSE Duration (Hrs.)	
g Exams)					L	Т	Р	Thy	P
ck/	PD3-1001	CCC	PLANTS TISSUE CULTURE AND INDUSTRIAL APPLICATIONS	6	4	2	00	3	00
ter of bac	PD3-1002	CCC	BIOTECHNOLOGY, GENETIC ENGINEERING AND RESOURCE UTILIZATION	6	4	2	00	3	00
rd semester number of back/	PD3- 1001&PD 3-1002	CCC	LAB – C :- PLANTS TISSUE CULTURE AND INDUSTRIAL APPLICATIONS & BIOTECHNOLOGY, GENETIC ENGINEERING AND RESOURCE UTILIZATION (PRACTICAL)		00	00	3	00	3
.= ~	PD3-1003	CCC	PLANT PATHOLOGY-DISEASES OF PLANTS	6	4	2	00	3	00
in the tive of ar pap	PD3- 1003& PD3-1005	CCC ECC/CB	LAB D :- PLANT PATHOLOGY-DISEASES OF PLANTS&EMBRYOLOGY AND REPRODUCTIVE BIOLOGY OF FLOWERING PLANTS (PRACTICAL)	3	00	00	3	00	3
ing pec	PD3-1004	SSC/PRJ	DISSERTATION	6	00	00	9	00	4
appearing n irrespec arre	PD3-1005	ECC/CB	EMBRYOLOGY AND REPRODUCTIVE BIOLOGY OF FLOWERING PLANTS						
r aj on	PD3-1006	ECC/CB	ADVANCED PLANT SYSTEMATICS	6	4	3	00	3	00
After natio	PD3-1007	ECC/CB	CONTEMPORARY CONCEPTS AND METHODS IN CELL BIOLOGY						
A nin	PD3-1008	ECC/CB	PLANT PHYSIOLOGY AND BIOCHEMISTRY						
After a examination	MINIMU	M CREDITS	S IN INDIVIDUAL SUBJECT IS 6 AND IN TOTAL IT WOULD BE 30	TOTAL = 33					

## Plant tissue culture and Industrial Applications (Course Code:- PD3-1001)

Course outcome:- After successful completion of this course -

Co1 – Student will understand the concept of tissue culture. They will have developed knowledge of micro propagation of different types of plants through tissue culture.

Co2 – Student will get knowledge about the protoplast research about the regeneration of plants. They will understand the importance and method of in vitro and in vivo conservation.

Co3 – Student will have knowledge about the different Application of plant tissue culture. They will also develop understanding the role of minerals and hormone in organs development in laboratory.

Co4 – Student will be able to know the fundamental of organ culture. They will also get knowledge about the techniques and utility of organogenesis.

Co5 – Student will be able to practice and learn the method of different type of culture media preparation. They will also get knowledge of application of tissue culture.

Co6- Student will be able to understand the instruments and techniques of biotechnology and Tissue culture laboratory.

Co7-Student will be able to start own enterprises of improved Plant Varieties and can produce Transgenic Crop.

РО	CO1	CO2	CO3	CO4	CO5	CO6	C07
PO1		V	٧				
PO2	V	V					
PO3							
PO4							
PO5			V		V		٧
PO6							٧
PO7					V	V	
PO8				V			

M.Sc. (BOTANY) IVTH SEMESTER								
COL	JRSE CODE: PD3-1	1001PAPER – I C	OURSE TYPE: CO	CC				
	COURSE TITLE:PLANTS TISSUE CULTURE AND INDUSTRIAL APPLICATIONS							
	CREDIT:6	+3	HOU	JRS:90+45				
THE	CORY: 6	PRACTICAL:	THEORY:90	PRACTICAL: 45				
		3 MAI	RKS					
	THEORY: 100	(70+30)	PRACT	TICAL:100/2				
Sch	eme of Marks:							
х	Short Answer t	ype questions: Thr	ee questions carrying	g 5 Marks each to be				
	asked two to be	e attempted. (Word	Limit 100 Word)					
x	i. Middle Answer	type questions: T	hree questions carry	ing 9 Marks each to be				
	set asked two to	o be attempted. (W	ord Limit 250 Word	))				
X	ii. Long Answer t	ype questions: Fiv	e questions carrying	14 Marks each to be set				
	three to be atten	mpted. (Word Lim	it 700 Word)					
	Plant cell and tiss	ue culture: Gene	ral introduction and	Requirement of plant				
nrs	tissue culture, Sterilization and its types, Media and its component, types of							
18 Hours	media, Steps of Plant tissue culture. scope of Plant tissue culture.							
I								
	Culture systems:C	Concept of totipo	tency, cellular diff	ferentiation and organ				
	differentiation, phys	siological, biolog	ical and molecular	role of minerals and				
ours	Growth Regulator	Growth Regulator in understanding differentiation of organs under in vitro						
18Hours	conditions.							
	Culture Techniques: Cell Suspension Cultures, callus Culture and Single Cell							
	Culture, Production of hybrids and cybrids.							
5		•		culture, hybrid selection				
18 Hours	and regeneration. Possibilities, achievements and limitation of protoplast research.							
18 E		Micro propagation (Via organogenesis and embryogenesis)						
	Germplasm conserva							
S				ndamental aspects of				
18Hours	morphogenesis, embryogenesis and androgenesis. Mechanism, techniques and							
181	utility of morphogenesis and ambryogenesis.							
Application of plant tissue culture: Clonal propagation, somaclor								
sını	seed, hybrids and cyt							
18Hours			anon and gor inplasifi	5.01 <i>u</i> ₂ c.				
1								

	1. Development of regeneration protocols employing direct and indirect					
	organogenesis /somatic embryogenesis in economically important horticultural					
(	and/or medicinal plants.					
1001	2. Control of phenolics in recalcitrant tissues under culture conditions.					
D3-	3. Study of various physico-chemical factors (pH, light, hormones, etc.) on in vitro					
K(P	growth and development of tissues or organs, rooting of regenerants, in vitro and					
/OR	ex vitro hardening, potting and acclimatization in natural conditions.					
Y W	4. Shoot-tip meristem culture for raising virus-free plants in tomato / tobacco.					
OR	5. Agrobacterium rhizogenesmediated development of hairy root cultures.					
RAT	6. Isolation of bioactive compounds from medicinal plants using column					
LABORATORY WORK(PD3-1001)	chromatography and TLC.					
LA	7. Preparation of synthetic seeds for germplasm conservation using somatic					
	embryos or other propagules.					
	1. Herman EB (2008) Media and Techniques for Growth, Regeneration and					
	Storage 2005-					
	2008. Agritech Publications, New York, USA.					
S	2. Pierik RLM (1999) In Vitro Culture of Higher Plants. Kluwer Academic					
NIC	Publishers.					
SUGGESTEDREADINGS	3. Prakash J & Pierik RLM (1991) Horticulture - New Technologies and					
DR	Applications (Current					
STE	Plant Science and Biotechnology in Agriculture). Kluwer Academic Publishers.					
GE	4. George EF, Hall MA and Geert-Jan De Klerk (2008). Plant Propagation by					
SUG	Tissue Culture					
	(3rd Edition), Springer, Netherlands.					
	5. Journals: Plant Cell, Tissue and Organ Culture, Plant Cell Reports.					
L						

# **Biotechnology, Genetic Engineering and Resource Utilization** (Course Code: - PD3-1002)

Course outcome: - After successful completion of this course-

Co1 – Student will get knowledge about Importance of recombinant DNA technology. Student will get idea about gene cloning and DNA libraries.

Co2 – Student will have knowledge about the technique and importance of DNA fingerprinting and PCR.

Co3 – Student will know how they can grow disease free plant by tissue culture technique. They will develop understanding about how gene technology has helped in improving various qualities in crops.

Co4 – Students will know the characters of Agro bacterium and they will get knowledge about how agro bacterium used for developing a transgenic plants by genetic engineering.

Co5 – Students will have developed the knowledge of genetic improvements of microbes for Industrial important. They will get idea about fermentation technology.

C06- Students will understand the instruments and techniques of biotechnology and enhance learning skill for the operation of tools and techniques of genetic engineering. Co7-Students can start own enterprises of improved Plant Varieties and can produce Transgenic Crop.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1		V					
PO2	V	٧		٧			
PO3							V
PO4							
PO5			V				
PO6			V				V
PO7						٧	
PO8					V	V	

M.Sc. (BOTANY) IVTH SEMESTER								
			002PAPER - II	COURSE TY				
CO	OURSE	E TITLE: BIO	DTECHNOLOGY, GEN UTILIZA		RING AND RESOURCE			
		CREDI	T:6+3	H	OURS:90+45			
THE	ORY:	6	PRACTICAL:3	THEORY:90	PRACTICAL: 45			
			MAR	KS				
	THEORY: 100 (70+30)         PRACTICAL:100/2							
		f Marks:						
1.				tions carrying 5 Ma	arks each to be asked two to			
		± `	Word Limit 100 Word)					
ii			•••••	• •	Aarks each to be set asked			
			pted. (Word Limit 250 W					
ii				ons carrying 14 Ma	rks each to be set three to be			
	a	ttempted. (Wo	rd Limit 700 Word)					
	Bioteo	chnology: Bas	sic concepts, principles,	scope and applicat	tion.Salient Achievement of			
su	Biotec	chnology.						
18 Hours	Bioteo	<b>Biotechnology</b> (Plant breeding): -Plant Breeding in concept of Crop Improvement, Method						
18	of Cro	p Improvemer	t, Conservation of Plant	Genetics Resource.				
	D							
sınc				· · ·	nes and vector); Introduction			
18Hours	of DNA into host; Agrobacterium mediated transformation, plant agrobacterium interactions;							
Ι		-		_	d gene tagging; chloroplast			
			•	porter genes, Selec	tion of transformed cell and			
		binant screenii	0					
		genic plants of	-	~				
s.					ciples and techniques; PCR			
18 Hours				equencing and gene	ome mapping.Application of			
18 F	Genetic engineering.							
	Genomics, Proteomics, Glycomics, Bioinformatics							
sı		U	-		ection of recombinants and			
18Hours		•	tic improvements of ind	ustrial microbes, n	nitrogen fixers, fermentation			
18	techno	ology.						

	Instrumentation and Techniques: Electrophoresis (agarose and PAGE); Chromatography:
sınc	principle and its types; Microscopy (Light and electron microscopy, SEM and TEM); Blotting
18Hours	Techniques, Microarray
	1. Preparation of different types of standard tissue culture media.
LABORATORY WORK (MBT203)	<ol> <li>Establishment of aseptic cultures following appropriate sterilization procedures using seeds.</li> </ol>
MBJ	3. Preparation of competent cells and agrobacterium transformation by electroporation.
IK (I	4. Agrobacterium tumefaciens mediated transformation of tobacco.
VOR	5. Visualization of GFP or YFP in transgenic Arabidopsis.
V V	6. Morphological and histochemical features of major cereals, oilseeds, legumes, forest
LOR	trees, non-alcoholic beverages and medicinal plants.
RA	7. Analysis of crude extracts from medicinal plants using HPLC.
ABO	8. Evaluation of a transgenic phenotype (viz., Herbicide resistance) under containment
$\mathbf{L}_{\ell}$	conditions in the field.
	1. Adrian S, Nigel WS, Mark RF (2008) Plant Biotechnology: The genetic manipulation
	of plants, Oxford university press.
IGS	2. Buchanan B, Gruissem G and Jones R (2000) Biochemistry and Molecular Biology of
DIN	plants, American society of plant physiologists, USA.
READINGS	3. Butenko RG (2000) plant cell culture, university press of pacific.
	4. Davies PJ (2004) plant Hormones, Kluwer academic publishers, Netherlands.
SUGGESTED	5. Halford N (2006) plant Biotechnology- current and future applications of genetically
[99]	modified crops, John Wiley and Sons, England.
SU	6. Wickens GE (2004) Economic Botany: Principles and practices, Springer, ISBN 978-
	0-7923-6781-9.

# Plant pathology and diseases of plants (Course Code: - PD3-1003)

Course outcome –After completion of this course –

Co1 – Students will get knowledge about the production of new races of fungi which are more harmful for host plants. They will get to know different control measure of plant diseases and quarantine procedure.

Co2- Student will understand the characteristics of microorganism like fungi, Bacteria and viruses. They will also develop knowledge their parasitic ability and damage caused by them.

Co3 – Students will have developed the knowledge of different disease of vegetable caused by viruses, nematodes and mycoplasma. They will also understand how these diseases control.

Co4 – Student will get knowledge about symptom of plant diseases and they will also know about pathogenesis.

Co5- Student will be able to know the importance of environment and nutrition on disease development. They will also get knowledge about how to pathogen disseminate.

Co6-Student will be able Understand the techniques and good lab practices for working in a laboratory and develop skill in slide Preparation of plant disease.

Co7- Student will be able Develop skills for identifying fungal genera and fungal disease on the basis of symptoms, using them for industrial and loboratory purposes.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1	٧						
PO2	٧	V	V		٧		
PO3							٧
PO4					V		
PO5							٧
PO6			V	V			
<b>PO7</b>						V	
PO8							

M.Sc. (BOTANY) IVTH SEMESTER						
COL	COURSE CODE: PD3-1003PAPER - IIICOURSE TYPE: CCC					
	COURSE TITLE:PLANT PATHOLOGY-DISEASES OF PLANTS					
CREDIT:6+3 HOURS:90+45						
THE	ORY: 6	PRACTICAL:3	THEORY:90	PRACTICAL: 45		
		MAR	KS			
	THEC	DRY: 100 (70+30)	PRAC	TICAL:100/2		
Sch	eme of Mark	KS:				
i.	Short Ar	nswer type questions: Three que	stions carrying 5 Mark	s each to be asked two to		
	be attem	pted. (Word Limit 100 Word)				
ii	. Middle A	Answer type questions: Three qu	estions carrying 9 Ma	urks each to be set asked		
	two to be	e attempted. (Word Limit 250 W	Vord)			
ii	i. Long An	nswer type questions: Five quest	ions carrying 14 Mark	as each to be set three to be		
	attempte	d. (Word Limit 700 Word)				
		to biotic interactions with pla				
	specialization, production of new races, adaptation of fungi to different hosts.					
our	Control of plant diseases: Principles of plant disease control, methods of control e.g.					
18 Hours	regulatory chemical: Biological and breeding of resistant varieties of host plants, plant					
Ι	quarantine.					
sun	Recent advances in plant-bacteria, interactions: Stages of pathogenesis: citrus canke					
Hou	bacterial blight of cotton, bacterial leaf blight disease of rice, bacterial brown rot or wilt					
18Ho	disease of potatoes, bacterial Rot of wheat ears (tunda disease).					
	Recent advances in plant fungi interaction stages of pathogenesis: diseases caused by					
	phycomycetes-wart disease potato, damping-off of seedlings, fruit rot of cucurbits, Rhizome					
SII	rot of ginger, green ear disease of bajra, downy mildew of pea. Diseases caused by					
18 Hours	ascomycetes-stem galls of coriander, peach leaf curl, leaf spot of turmeric, ergot of bajra,					
18	false smut of paddy, stem rot of paddy.					
	Tarse situt OI	paddy, stem for of paddy.				

		Diseases caused by basidiomycetes (the smut) loose smut of wheat, covered smut of barley,
	18Hours	bunt or stinking smut of wheat, leaf smut of rice, flag smut of wheat.
		Diseases caused by fungi-imperfecti-leaf spot or helminthosporium disease of rice, blast of
	181	rice, red rot of sugarcane, wilt of pigeon pea, wilt of cotton, wilt disease of linseed.
		Diseases caused by virus, nematodes, mycoplasmas-viral disease-yellow vein mosaic of
		Bhindi, bunchy disease of banana.
	S	Mycoplasma and plant disease-sandal spike, grassy shoot disease of sugarcane, little leaf of
	18Hours	brinjal.
	18F	Disease due to nematodes-root knot f vegetables, molya disease of barley and wheat, ear-
		cockle of wheat.
-	(	1. Study on susceptible and resistance interactions at cellular and biochemical levelsbetween
	1003	plants and pathogens, and between plant and pests.
	D3-]	2. Investigation of infection cycle of a plant parasitic nematode (e.g., root knot
	(P)	nematode, Meloidogyne incognita) in susceptible and resistant tomato roots in the absence
	ORF	andpresence of resistance genes (Mi gene).
	W 2	3. Estimation of activity of phenylalanine ammonia lyase in healthy and disease leaves.
	JRY	4. Detection of plant viruses from infected leaf tissues using ELISA and Western Blot.
	ATC	5. Computer-based study of a multigene family pathogenicity gene from the Nem databases.
	SOR	6. Field visit to show diseases on crop plants.
	LABORATORY WORK (PD3-1003)	
-		1. Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground.
		Trends in Genetics 22: 396–403.
		2. Davis EL, Hussey RS, Baum TJ (2004) Getting to the roots of parasitism by nematodes.
		Trends in Parasitology 20: 134–141.
	Ś	3. Plant Nematology (2006) Edited by Perry and Moens, CABI. <i>Plant virology and insect</i> -
	ING	plant interactions:
	SUGGESTEDREADINGS	4. Induced responses to herbivory by R Karban and IT Baldwin (1997) Chicago University
	DRF	Press, Chapter 3, pg47-100.
	STE	5. Mathew's Plant Virology by Roger Hull (2001) Academic Press, NY. Plant-fungi
	GES	interactions:
	SUG	6. Plant resistance mechanisms (SAR, ISR) - Strange RN, (2003) Introduction to Plant
		Pathology, John Wiley & Sons, USA.
		7. Signal transduction; Molecular diagnostics; Transgenic approaches for crop protection -
		Dickinson M, (2003) Molecular Plant Pathology, Bios Scientific Publishers, London.
		· · · · · · · · · · · · · · · · · · ·

## Embryology and Reproductive Biology of Flowering Plants (Course Code: - PD3-1005)

Course outcome –After completion of this course –

Co1 – Student will understand the floral architecture and the process of flower development.

Co2 – Students will understand the structure of Anther and development of pollen and biochemical aspects of pollen. They will also know about the development of male and female gametophyte.

Co3 – students will understand pollination mechanism. They get to know about fertilization and how pollen stigma interaction takes place. They will also understand the concept of Incompatibility.

Co4 – Student can understand the relation between embryo and endosperm. Student will get idea about practical importance of polyembryony. Student will develop understanding of formation of embryo from somatic cell.

Co5 – Students will get knowledge about the types of fruits and their biochemistry during maturation students will also understand how endosperm provide nutrition to embryo development. They also understand how germination of seed takes place in plants.

Co6- Students will understand the techniques and lab practices for working in field of taxonomy and preparation of Herbarium.

Co7- Students can make own herbaria of that region and can start own food resource utilization centre.

РО	CO1	CO2	CO3	CO4	CO5	CO6	CO7
PO1					٧		
PO2	٧	V	V	٧			
PO3							
PO4						٧	V
PO5			٧				
PO6							V
PO7						٧	
PO8							

	M.Sc. (BOTANY) IVTH SEMESTER					
COURSE CODE: PD3-1005PAPER - VCOURSE TYPE: ECC						
COURSE TITLE: EMBRYOLOGY AND REPRODUCTIVE BIOLOGY OF FLOWERING PLANTS						
	CREDIT:6+3	но	OURS:90+45			
THE	ORY: 6 PRACTICAL:3	THEORY:90	PRACTICAL:45			
	MARI	KS				
	<b>THEORY: 100 (70+30)</b>	PRAC	CTICAL:100/2			
	eme of Marks:		1 1 1 1 1 1			
1.		stions carrying 5 Ma	rks each to be asked two to			
	be attempted. (Word Limit 100 Word)					
ii			Marks each to be set asked			
	two to be attempted. (Word Limit 250 W					
ii	<b>i.</b> Long Answer type questions: Five questi	ons carrying 14 Mar	ks each to be set three to be			
	attempted. (Word Limit 700 Word)					
	Modes of Reproduction: An overview					
sını	Flower development: Regulation of flo	oral architecture a	nd diversification; Floral			
18 Hours	organogenesis; Pollination regulation of flower development.					
I						
	Male gametophyte: Structure of anthers,	microsporogenesis	, role of tapetum, pollen			
	development, male sterility, sperm dimorphism and hybrid seed production, pollen					
urs	germination, pollen tube growth and guidance, pollen storage, pollen allergy, pollen					
18Hou	embryos.					
18.	Female gametophyte: Ovule development, megasporogenesis, types of Embryo sacs,					
	Structure of Embryo sac, Haustorial behaviour of Embryo sac.					
	Pollination, pollen-pistil interaction and f					
urs	Pollen Storage, pollination mechanisms an	e e				
18Hours		incompatibility, dot	uble fertilization, in vitro			
I	fertilization.					
	Diant nallington interactions and Embryon	an acian Dlant nalling	ton interestions neller land			
s.	Plant-pollinator interactions and Embryog	-	-			
18Hours	pollination energetics, apomixes, embryoge	iny in alcotyledons	; and in monocotyledons;			
18L	polyembryony, somatic embryogenesis.					

L

	Fruit biology: Development biology and diversity of fruit types, Dynamics of fruit growth,						
	<ul><li>biochemistry and molecular biology of fruit maturation</li><li>Seed biology: Endosperm development during early maturation stages, embryogenesis ultra-</li></ul>						
sını							
18Hours	structure and cytology, seed development pattern, parthenocarpy, pseudogamy and						
	autonomous development of endosperm; Embryo and endosperm culture.						
	1. Study of developmental aspects of reproduction using Arabidopsis mutants.						
	2. Isolation of embryo sacs and visualization of post-fertilization stages with the help of						
	fluorescence and confocal microscope.						
6	3. Study of micro and megasporogenesis using nomarski interference microscope.						
LABORATORY WORK(PD3-1005)	4. Microtomy of resin-embedded and wax-embedded material.						
D3-	5. Determination of mating systems using Isozymes/DNA markers.						
K(P	6. Study of pollination syndromes and plant-pollinator interaction.						
VOR	7. Measuring floral sex allocation based on biomass.						
ΥW	8. Assessment of floral rewards: quantitative and qualitative analysis of nectar and						
ſOR	pollen.						
RAT	9. Assessment of attraction of insects to artificial flowers and determining pollination						
BO	energetic.						
LA	10. Demonstration of in-situ expression of anther/ovule specific genes.						
	11. Induction of somatic embryos using a suitable plant material.						
	12. Study of types of embryo sacs during apomictic development by employing ovole-						
	clearing method.						

	1.	Barrett SCH (2008) Major evolutionary transitions in flowering plant reproduction.
		Univ. of Chicago press.
	2.	Faegri K & van der pijl L (1979), The principles of pollination ecology. Pergamon
		press.
S	3.	Harder LD & barrett SCH (2006) ecology and evolution of flowers, oxford univ. press.
IN	4.	O Neill SD & Roberts JA (2002) plant reproduction, Sheffield academic press.
READINGS	5.	Raghavan V (1997) molecular embryology of flowering plants, Cambridge univ. press.
RE	6.	Raghavan V (2000) developmental biology of flowering plants, springer V erlag, New
Q		York.
ITS	7.	Richards AJ (1986) plant breeding system, George allen and unwin, UK.
SUGGESTED	8.	Scott RJ and stead AD (2008) molecular and cellular aspects of plant reproduction.
UG		Society for experimental biology, seminar series 55.
$\mathbf{\tilde{s}}$	9.	Shivanna KR and johri BM (1985) the angiosperm pollen: structure and function. New
		Delhi, India: Wiley-eastern.
	10	. Shivanna KR and Rangaswamy NS (1992) pollen biology: A laboratory manual,
		springer-V erlag, Berlin.